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Abstract

This paper studies a competitive cheap talk model with two senders. Each sender, who is
responsible for a single project, only observes the return of his own project. Exactly one project
will be implemented. Both senders share some common interests with the receiver, but at the
same time have own project biases. Under simultaneous communication, all equilibria are shown
to be partition equilibrium, and the partitions of two agents’ are intimately related: the interior
partition points of two agents has an alternating structure. In the most informative equilibri-
um, the agent with a smaller bias has weakly more partitions. Simultaneous communication,
sequential communication and simple delegation are essentially all outcome equivalent, as they
always lead to the same most informative equilibrium.
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1 Introduction

Decision makers often seek advice from multiple experts. For instance, consider an economics

department trying to hire a junior faculty member. The two targeted fields are, say micro theory

and macro. Due to budget constraint exactly one position will be filled. In each field a single

candidate is identified. The theory group of the department observes the quality of the theory

candidate but not that of the macro candidate. Similarly, the macro group observes the quality

of the macro candidate but not that of the theory candidate. The department chair, say a labor

economist, does not observe the quality of either candidate. The chair prefers to hiring the candidate

of higher quality. For each group, though they also prefer the higher quality candidate being hired,

they have own-field biases: if the candidate of a group is hired that group derives a positive private

benefit.

The above example has several distinguishing features. (i) A decision maker (DM) consults two

experts regarding two alternative options (projects). (ii) The experts’ interests are largely aligned

with the DM’s, but each expert has his own-project bias. (iii) Two experts only observe the return
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of his own project. (iv) The DM’s action is binary (which project to adopt) and exactly one project

will be adopted. Thus in some sense two experts are competing with each other in having their own

projects adopted. The purpose of this paper is to study communication or information transmission

in the above setting, with communication being modeled as cheap talk (Crawford and Sobel, 1982,

CS hereafter). The novelty of the paper is that we introduce an aspect of competition explicitly

into cheap talk models with multiple senders: each sender has an extra incentive to have his own

project implemented at the expense of the other sender.

Real world situations of competitive cheap talk, which share the above features, abound. For

instance, consider a CEO of a firm deciding on launching one of two alternative new products

(projects). The CEO consults two managers, who each are responsible for one of the two products,

regarding the profitability of each product. Each manager only knows the profitability of his own

product and has an extra incentive to have his own product launched. Alternatively, consider

the President weighing between two alternative policies to address the environmental issues. The

President consults two experts who each are responsible for investigating the effectiveness of one

policy. Each expert only observes the effectiveness of his own policy but have an extra incentive to

have his own policy adopted.

Specifically, there are two symmetric projects and the return of each project is uniformly dis-

tributed. The DM’s payoff is just the return of the adopted project. Each agent’s payoff has two

components. The first component is the return of the adopted project. This component implies

that the two experts’ and the DM’s interests are largely aligned: all prefer the project with a higher

return being implemented. The second component is private benefit: an agent reaps this payoff

if and only if his own project is adopted. We call this component own-project bias, which creates

conflicts of interests: each agent prefers having his own project implemented. Given that exactly

one project will be implemented, two agents’ own-project biases create competition between two

agents. We mainly focus on the case of asymmetric agents, with agent 1 having a smaller bias.

We first study the situation in which two agents send messages simultaneously. As in standard

cheap models, all equilibria are shown to be partition equilibrium in which each agent only indicates

to which interval the return of his own project belongs. Any equilibrium must be asymmetric,

meaning that agents have different partitions. The combined messages of two agents can be ranked

according to the posterior induced (low messages versus high messages).

The first main result of the paper is that the equilibrium information transmissions of two

agents are intimately related. In particular, in equilibrium two agents’ messages must exhibit

an alternating ranking structure: for any message belonging to one agent the two messages of

adjacent rankings must belong to the othe agent. Correspondingly, two agents’ interior partition

points also have an alternating feature: one agent’s partition point must be neighbored by two

partition points of the other agent. As a result, in equilibrium two agents either have the same

number of partitions, or the numbers of partitions differ by one. This implies that the amount

of (meaningful) information transmitted by two agents cannot be too far apart. Moreover, if one

agent’s bias decreases, then both agents will transmit more information in the most informative

equilibrium. Thus in some sense two agents’ information transmissions are strategic complements.

The underlying reason for these features is as follows. The DM’s problem is to select the better

project to implement. Thus it is the comparison of two projects’ returns that matters. If one agent

transmits much more information than the other agent does, then some information transmitted

2



by the first agent will be wasted as it cannot improve the DM’s decision making. When one agent’s

bias decreases, this agent will naturally transmit more information, and this also allows the other

agent to transmit more (meaningful) information.

The lowest (highest) overall message has the feature that if an agent sends that message then

that agent’s project will not (will) be implemented for sure regardless of the other agent’s mes-

sage. We call the lowest and highest overall messages as the give-up option and the sure option

respectively. We call an equilibrium with agent i having the give-up option an A-i-S equilibrium.

In total there are four types of equilibria: A-1-S equilibria with odd or even (total) number of

partitions, and A-2-S equilibria with odd or even number of partitions. We focus on the most in-

formative equilibrium, which maximizes the DM’s expected payoff, and ask the following question:

whether in the most informative equilibrium agent 1, who has a smaller bias, should always have

the give-up option? Compared to the most informative A-2-S equilibrium, the most informative

A-1-S equilibrium either has one more partition or has the same number of partitions. This is

because in A-1-S (A-2-S) equilibrium, agent 1’s (agent 2’s) bias, which is smaller (bigger), enters

into the incremental step sizes more often. If an A-1-S equilibrium and an A-2-S have the same

odd number of partitions, then the A-1-S equilibrium is more informative, as it leads to overall

more even partitions. However, if an A-1-S equilibrium and an A-2-S have the same even number

of partitions, then the A-2-S equilibrium is more informative. The general conclusion is that, in

the most informative equilibrium it is not always the case that the agent with a smaller bias has

the give-up option. However, it is more likely that the agent with a smaller bias has the give-up

option in the most informative equilibrium.

Similarly, in the most informative equilibrium, it is not always the case, but it is more likely,

that the agent with a smaller bias has the sure option. Moreover, relative to the agent with a bigger

bias, in the most informative equilibrium the agent with a smaller bias has weakly more messages.

Finally, in the most informative equilibrium, while it is possible for the agent with a smaller bias

to have the give-up option and sure option at the same time, it is impossible for the agent with

a bigger bias to have both options at the same time. All these properties indicate that the agent

with a smaller bias is chosen to be trustworthy more often in equilibrium.

We also ask the following comparative statics question: fix the combined bias of two agents,

will the DM be better off or worse off when two agents’ biases become relatively more unequal? As

two agents’ biases become more unequal, while the number of partitions of the most informative

A-1-S equilibrium increases, that of the most informative A-2-S equilibrium decreases. However,

the overall most informative equilibrium could become more informative or less informative. The

general conclusion is that the DM’s payoff depends both on the combined bias and the distribution

of biases between two agents. Interestingly, the DM’s payoff in the most informative equilibrium

could increase even when the combined bias increases.

We then study sequential communication (talk) in which one agent publicly sends message

first. Since the second agent is able to condition his message on the first agent’s message, the

second agent can at most have two messages, which essentially indicates whether the return of

his own project is higher than that of the first agent’s project. Interestingly, the set of equilibria

under simultaneous communication (talk) and that under sequential communication are equivalent

or lead to the same outcomes. This is a quite surprising result, as in typical cheap talk models

with multiple senders sequential communication and simultaneous communication usually lead to
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different outcomes. The underlying reason is again due to the fact that only the comparison of

two projects matters. Roughly speaking, even under simultaneous talk, when the marginal type of

one agent decides which message to send, he has already implicitly conditioned on that the other

agent’s message has adjacent rankings. This implies that, under sequential talk, the second agent’s

ability to directly condition his message on the first agent’s message does not matter.

We then consider simple delegation, under which the DM delegates the decision rights to one of

the agents. It turns out that simple delegation and sequential talk are essentially equivalent, in the

sense that they lead to the same most informative equilibrium. This is because under sequential

talk the DM’s decision always follows the second agent’s message; it is as if the second agent

have the decision rights. Combining with previous results, we conclude that simultaneous talk,

sequential talk, and simple delegation all lead to the same most informative equilibrium. This is

quite surprising as in other cheap talk models delegation will lead to outcomes different from those

under simultaneous talk or sequential talk.

Comparing two agents’ payoffs, under simultaneous communication it turns out that in any

equilibrium the agent who has the sure option is always better off than the other agent. Translated

into other settings, the agent who talks the second under sequential communication and the agent

who has the decision rights under simple delegation always gets a higher expected payoff.

Finally, we study the case of more than two agents. Our focus is on symmetric agents of the

same bias. In the most informative symmetric equilibrium, we show that as the number of agents

increases each agent transmits more information. This implies that more intense competition among

agents leads to more information transmission. Intuitively, with more agents it is more likely that

there is at least one agent whose project has a higher return. This means that the cost of sending

a higher message increases for each agent, which reduces each agent’s incentive to exaggerate the

return of his own project.

This paper is related to the growing literature on cheap talk with multiple senders. For some

models (Gilligan and Krehbiel, 1989; Epstein 1998; Krishna and Morgan, 2001a, 2001b; Li, 2010),

the state space is one dimensional and both senders perfectly observe the same realized state. In

Austen-Smith (1993), senders receive correlated (conditionally independent) signals regarding the

state. The main difference between those models and ours is that there is no explicit competition

between senders in those models. In Krishna and Morgan (2001a), for instance, the receiver’s action

space is continuous, and two senders try to pull the receiver’s action either in different directions

(opposing biases) or in the same direction but to different degrees (like biases). In some sense, two

senders are competing with each other in influencing the receiver’s action to their own favor. But

the competition is implicit in that the receiver can combine the information transmitted by both

senders and fine tune his action continuously, as his action space is continuous. In our model, the

state space is two dimensional (the returns of two projects), and the receiver’s action is binary since

exactly one project will be implemented. Thus competition is explicit in the sense that only one

sender’s project will be implemented. Another difference is that in our model two senders observe

non-overlapping private information (each only observes the return of his own project).

Hori (2006) and Yang and McGee (2013) study cheap talk models in which two senders have

partial and non-overlapping private information, and the receiver’s action space is one dimensional

but continuous. Alonso et al. (2008), Rantakari (2008), and Yang (2013) study strategic communi-

cation with senders having non-overlapping private information, but the receiver’s action space is
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multi-dimensional and continuous (each decision needs to be made for each sender’s division). In

those models, the need to communicate results from the need to coordinate decisions across differ-

ent senders. Again, in those models, although each sender tries to pull the receiver’s decision(s) to

his own favor, there is no explicit competition between senders. Battaglini (2002) and Ambrus and

Takahashi (2008) study multidimensional cheap talk models with multiple senders.1 In both mod-

els, each sender observes the realized states in all dimensions and the decision is a two-dimensional

vector. In this setting, full information revelation can be typically achieved in equilibrium.

In a two-stage auction setting, Quint and Hendricks (2013) model the first stage indicative

bidding as a cheap talk game. The two bidders who send the highest messages will be selected

by the seller (receiver) to advance to the second stage of auction. In some sense, bidders in the

first stage, by cheap talking, are competing with each other for the two spots in the second stage.

This aspect is pretty much related to our paper. While their model focuses on the setting of

indicative bidding, our model applies to more general situations of competitive cheap talk. The

most important difference is that in their model there is only pure conflict of interests among the

bidders (senders), while in our model senders have common interests as they care about the quality

of the adopted project. Finally, bidders are symmetric in their model as they have the same entry

cost, and they focus on the symmetric equilibrium. In our model senders have different biases and

we focus on asymmetric equilibrium.

This paper is also related to “comparative” cheap talk (Chakraboty and Harbaugh, 2007, 2010;

Che et al., 2013). In those models, a single expert observes the realized returns of multiple projects,

and makes recommendation to the receiver, who then makes decision about which project to im-

plement. Under certain conditions, Chakraboty and Harbaugh (2007, 2010) show that some infor-

mation can be credibly transmitted by the expert by making comparative statements. Focusing on

asymmetric projects, Che et al. (2013) find that pandering is possible: the expert sometimes might

recommend a “conditionally better-looking” project whose realized return is lower than that of the

other project. Our paper is related to those papers in that the receiver’s action is binary (which

project to implement).2 The main difference is that in our model there are multiple experts, and

each expert is responsible for a single project. This creates an aspect of competition in our model,

which is absent in their models.

The rest of the paper is organized as follows. Section 2 sets up the model and offers some

preliminary analysis. Section 3 studies a benchmark case of simultaneous communication with

symmetric agents. In Section 4 we study simultaneous communication with asymmetric agents. To

characterize asymmetric equilibrium, we introduce and study an equivalent equilibrium which we

call quasi-symmetric equilibrium. Section 5 studies sequential communication and simple delega-

tion, and the case of more than two agents are investigated in Section 6. Section 7 offers conclusions

and discussions.

1Hagenbach and Koessler (2010) and Galeotti et al. (2013) study strategic communication in networks. Each
agent is sender and receiver at the same time. The need to coordinate actions among agents gives rise to the need to
communicate. In both models, agents’ private information is binary.

2Jindapon and Oyarzun (2013) also study a one-sender cheap talk model in which the receiver takes a binary
action as to whether to accept a good recommended by the sender. The sender has two possible types, honest or
biased, and his type is unobservable to the receiver.
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2 Model and Preliminary Analysis

Consider a principal or a decision maker (DM) who is facing the choice between two alternative

projects. The return of project i, i = 1, 2, is θi, which is uniformly distributed on [0, 1]. We

assume that θ1 and θ2 are independent from each other. There are two agents, with each agent

i being responsible for investigating project i. The realization of θi is only observed by agent i.3

The DM has to adopt exactly one project. Adopting both projects is not feasible, which could be

possibly due to some budget constraint. This implies that the two projects are competing projects.

Adopting neither project is not an option either.4

In the basic model we consider the case of simultaneous communication, with two agents simul-

taneously sending messages to the DM. Denote agent i’s message as mi. After hearing messages

m1 and m2, the DM decides which project to adopt. Let d ∈ {1, 2} be the DM’s decision, with

d = i indicating that project i is adopted.

Given the project choice d, the DM’s payoff is UP (d) = θd. Agent i’s payoff is given by

Ui(d) =

 θd if d ̸= i

θd + bi if d = i
.

The parameter bi ∈ (0, 1) represents agent i’s own project bias. That is, agent i derives private

benefit bi if and only if project i is adopted. Both b1 and b2 are common knowledge. Observing

the payoff functions, we see that there is a common interest among the DM and two agents: all

of them care about the return of the adopted project and want to choose the project that has a

higher return. The conflict of interest is reflected in the own project biases b1 and b2: each agent

has a bias to have his own project to be adopted. If bi were 0 for both agents, then agents’ interests

are perfectly aligned with the DM’s. Note that b1 and b2 could be different, or two agents could

have different biases. Without loss of generality, we assume that 0 < b1 ≤ b2. That is, agent 1 has

a smaller bias. To ensure that some information could possibly be transmitted in equilibrium, we

further assume that b1 ≤ b2 < 1/2.5 All players are expected utility maximizers.

One rationale for such payoff structure is as follows. The profit of the firm, owned by the DM, is

θd. Each agent is paid a fraction of the firm’s profit, say αθd, and each agent derives private benefit

Bi if his own project is chosen. The DM’s net payoff is (1 − 2α)θd, which is proportional to θd.

Defining bi = Bi/α. Then agent i’s utility function is proportional to Ui(d). The private benefits

of agents could be due to many reasons. In the example of department hiring, the private benefit

could be that hiring a candidate of the same field might lead to future cooperation with existing

group members. In the example of the firm, the manager whose project is chosen is very likely to

be the one who will carry out the project, the action of which usually brings private benefit. In

the example of government policy, the future career of the expert whose policy is chosen might be

3This feature that different agents observe different information is understudied in the cheap talk literature. It
is reasonable due to specialization in the modern world: in organizations such as firms and governments, different
divisions (groups) specialize in different functional areas.

4Later on we will discuss what will happen if there is a third option of implementing neither project.
5In particular, this condition implies that if one agent babbles then it is possible for the other agent to transmit

some information.
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boosted by the very fact that his policy is chosen.

Under simultaneous communication, a strategy for agent i specifies a message mi for each θi,

which is denoted as the communication rule µi(mi|θi). A strategy for the DM specifies an action d

for each message pair (m1,m2), which is denoted as decision rule d(m1,m2). Let the belief function

g(θ1, θ2|m1,m2) be the DM’s posterior beliefs on θ1 and θ2 after hearing messages m1 and m2. Since

θ1 and θ2 are independent and agent i observes only θi, the belief function can be decomposed into

distinct belief functions g1(θ1|m1) and g2(θ2|m2).

Our solution concept is Perfect Bayesian Equilibrium (PBE), which requires:

(i) Given the DM’s decision rule d(m1,m2) and agent j’s communication rule µj(mj |θj), for
each i, agent i’s communication rule µi(mi|θi) is optimal.

(ii) The DM’s decision rule d(m1,m2) is optimal given beliefs g1(θ1|m1) and g2(θ2|m2).

(iii) The belief functions gi(θi|mi) are derived from the agents’ communication rules µi(mi|θi)
according to Bayes rule whenever possible.

Given two agents’ strategies, the DM’s optimal decision is just to implement the project that

has a higher expected return. That is, the optimal decision can be written as

d(m1,m2) =


i if E[θi|mi] > E[θj |mj ]

j if E[θi|mi] < E[θj |mj ]

i or j if E[θi|mi] = E[θj |mj ]

. (1)

And the DM’s expected (interim) payoff given m1 and m2 is given by E[Up(m1,m2)] =

max{E[θ1|m1], E[θ2|m2]}.
As in CS and ADM, all PBE are interval equilibria. Specifically, the state space [0, 1] is parti-

tioned into intervals and agent i only reveals to which interval θi belongs.

Proposition 1 All PBE in the simultaneous communication game must be interval equilibrium.

Proof. Since the two agents’ situations are symmetric, we only need to provide a proof for agent

1. Let µ2(·) be any communication rule for agent 2. Suppose the realized return of project 1 is

θ1 and agent 1 induces a posterior belief v1 of θ1. Given the DM’s optimal decision (1), agent 1’s

expected utility can be written as

Eθ2 [U1|θ1, v1] = Pr(E[θ2|µ2(·)] ≤ v1)(θ1 + b1) + Pr(E[θ2|µ2(·)] > v1)E[θ2|E[θ2|µ2(·)] > v1].

From the above expression, because Pr(E[θ2|µ2(·)] ≤ v1) is increasing in v1, it can be verified

that ∂2

∂θ1∂v1
Eθ2 [U1|θ1, v1] > 0. This means that for any two different posterior of θ1, say v1 < v1,

there is at most one type of agent 1 who is indifferent between v1 and v1. Now suppose there is

a PBE which is not an interval equilibrium. In particular, there are two states θ11 < θ21 such that

Eθ2 [U1|θ11, v1] ≥ Eθ2 [U1|θ11, v1] and Eθ2 [U1|θ21, v1] < Eθ2 [U1|θ21, v1]. It follows that Eθ2 [U1|θ21, v1] −
Eθ2 [U1|θ21, v1] < Eθ2 [U1|θ11, v1]−Eθ2 [U1|θ11, v1], which violates the fact that ∂2

∂θ1∂v1
Eθ2 [U1|θ1, v1] > 0.

Therefore, any PBE must be interval equilibrium.
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Essentially, due to own project bias each agent tries to overstate the return of his own project

to some extent. The benefit of overstating, say by agent 1, is that agent 1’s project will more likely

be implemented and thus agent 1 is more likely to reap the private benefit. On the other hand,

there is a cost of overstating: overstating by agent 1 reduces the probability that agent 2’s project

will be implemented, which might have a higher return. Consider two different types of agent 1

reporting as the same (higher) type. Compared to the lower type, the overstating of the higher

type involves a smaller cost. This is simply because, with the higher type project 1 has a higher

return and is more likely than project 2 to be the better project. Therefore, a higher type of agent

1 will try to induce a higher posterior, which implies that all PBE must be interval equilibrium.

3 Simultaneous Communication with Symmetric Agents

Before studying the more general case in which two agents have different biases, we first consider

the case that two agents are symmetric, which serves as a benchmark. More specifically, suppose

two agents have the same bias: b1 = b2 = b. We are interested in symmetric equilibrium, in which

both agents adopt the same strategy and the DM treats two agents equally.6 Recall that Proposition

1 establishes that all PBE must be of interval or partition form. Let {an} be the partition points

and N be the number of partitions. Each agent i sends message mn if θi ∈ [an−1, an], with a0 = 0

and aN = 1. The DM’s optimal decision rule is easy to describe: implement the project that has

the higher expected payoff; if there is a tie then implement two projects with equal probability.

Given agents’ information transmission strategy, E[θi|mn
i ] = (an−1+an)/2. We say that a message

mn is a higher message if n is larger. In general, the DM will adopt the project of the agent whose

message is higher.

To characterize the equilibrium partition points {an}, consider agent 1. If θ1 = an, 1 < n < N ,

agent 1 should be indifferent between sending message mn and message mn+1. More explicitly, this

indifference condition can be written as:

1

2
(an+1 − an)

an+1 + an
2

+
1

2
(an − an−1)

an + an−1

2
= [

1

2
(an+1 − an) +

1

2
(an − an−1)](an + b). (2)

To understand equation (2), note that, for agent 1, sending message mn or message mn+1 matters

for the outcome (which project is implemented) only when agent 2’s message is either mn or mn+1.

If agent 2’s message is higher (lower) than mn+1 (mn), project 2 (project 1) will be implemented

regardless of agent 1’s message. By sending message mn+1, agent 1 increases the probability that

project 1 will be implemented when agent 2’s message is either mn+1 or mn. The gain in expected

payoff of agent 1 is captured by the RHS of (2). In the mean time, the probability that project 2

will be implemented is decreased. The loss in expected payoff of agent 1 is captured by the LHS of

(2).

6Asymmetric equilibria exist for symmetric agents, which are qualitatively similar to the equilibria we derived
for asymmetric agents.
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Equation (2) can also be written as

1

2
(an+1 − an)[

an+1 + an
2

− (an + b)] =
1

2
(an − an−1)[(an + b)− an + an−1

2
]. (3)

Equation (3) has a clear interpretation. The RHS is the expected gain of sending the higher message

(when the other agent sends the lower message), and the LHS is the expected loss of sending the

higher message (when the other agents sends the higher message). Equation (2) can be further

simplified as:

(an+1 − an)− (an − an−1) = 2b. (4)

Equation (4) indicates that the partition sizes are increasing in the direction of b, with the incre-

mental step size being 2b. This feature is very similar to the partition equilibrium in the one-sender

model of CS (the uniform-quadratic setting), where the incremental step size is 4b. The similarity

in equilibrium features is surprising, given that our model is quite different from the CS model. In

particular, in CS there is only one sender, both the DM and the agent have quadratic loss utility

functions, and the DM’s action is continuous, while in our model there are two senders, both the

DM and the agents have linear utility functions, and the DM’s action is binary. In the current

model, the partition size increases because the cost of overstating has to be endogenously created.

If the partition sizes were equal, then the marginal type would strictly prefer to report the higher

message. By increasing the partition size for the higher message, it increases the cost of report-

ing the higher message for the marginal type: the other agent is more likely to report the higher

message and conditional on that the other agent’s project has a higher return.

Combining with the boundary conditions, the difference equation (4) can be solved as an =
n
N − n(N − n)b. The constraint that the total length of all partitions is less than 1 leads to the

inequality that bN(N−1) < 1, which gives rise to the upper bound of N , N : N = ⟨12+
1
2(1+

4
b )

1/2⟩.
Just like standard cheap talk models, given N > 1, for any integer N such that 1 ≤ N < N

there is a symmetric equilibrium. The DM’s expected payoff in the N -partition equilibrium, E(Up)

can be calculated as:

E(Up) =

N∑
n=1

[(an − an−1)
2 + 2(an − an−1)an−1]

an + an−1

2

=
2

3
− 1

6N2
− b2(N2 − 1)

6
. (5)

From the expression of (5), we can see that E(Up) is decreasing in b, and E(Up) is increasing in N

for N < N .7

The first term of E(Up) in (5), 2/3, is the expectation of the first order statistic of two random

variables that are uniformly distributed on [0, 1]. That is, 2/3 is the expected payoff the DM can

get if both agents fully reveal their private information. The last two terms reflect the payoff loss

7To see the last property, note that

E(Up(N))− E(Up(N − 1)) ∼ 1− b2N2(N − 1)2 > 0,

where the last inequality follows that bN(N − 1) < 1.

9



or inefficiency when two agents do not fully reveal information. In equilibrium, inefficiency does

not arise when two agents send different messages since in such a case the project with a higher

payoff is always implemented. Inefficiency arises only when two agents send the same message. In

such a case the principal randomly adopts one project, and the adopted project could have a lower

payoff. When the number of partition increases, the probability that two agents send the same

message decreases, which decreases the probability that the wrong project is implemented. If the

bias b decreases but the number of partitions remain the same, the partitions will be of more even

size. The overall probability that two agents send the same messages will decrease,8 which reduces

the probability that the wrong project is adopted.

From ex ante point of view, each agent’s expected payoff is just E(Up)+ b/2, since each agent’s

project will be implemented with probability 1/2. Thus the most informative equilibrium with N

partitions is also the Pareto dominant equilibrium.

4 Simultaneous Communication with Asymmetric Agents

Now we go back to the general setting with asymmetric agents. Throughout this section we as-

sume that b1 < b2. The following lemma shows that there is no symmetric informative equilibrium.

Note that symmetric babbling equilibrium always exists: two agents babble and the DM ignores

the messages and randomly selects one project to implement with equal probability.

Lemma 1 There is no symmetric informative equilibrium in which two agents have the same

partitions and the DM implements both projects with equal probability if two agents send the same

message.

Proof. Suppose to the contrary, there is a symmetric informative equilibrium, with both agents

having the same N ≥ 2 partitions, and the DM implements two projects with equal probability

if two agents send the same message. Let {an} be the equilibrium partition points. By previous

analysis for symmetric agents, the indifference conditions that characterize {an}, (4), should be

satisfied for both agents. That is, we must have

(an+1 − an)− (an − an−1) = 2b1,

and (an+1 − an)− (an − an−1) = 2b2.

But since b1 < b2, the above two equations cannot be satisfied at the same time. Therefore,

symmetric informative equilibrium does not exist.

4.1 Asymmetric equilibria

After ruling out symmetric equilibria, it is natural to start with asymmetric equilibria, in

which two agents have different partitions. Let N1 and N2 be the numbers of partitions, and

8In a two-partition example, let the partition point be a1 ∈ (0, 1/2). The overall probability of tying is (1−a1)
2+

a2
1, which is decreasing in a1 (when two partitions become more even).
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a1 = (a1,0, a1,1, ..., a1,N1) and a2 = (a2,0, a2,1, ..., a2,N2) be the partition points, for agent 1 and

agent 2 respectively. Agent i sends message mn
i if θi ∈ [ai,n−1, ai,n]. Since two agents’ partitions

are different, given any pair of messages (m1,m2), generically the DM’s induced posteriors about

two projects will be different (ties are non-generic). Thus the DM generically will only play pure

strategies regarding which project to implement. Put it differently, for all possible messages (com-

bining agent 1’s and agent 2’s) the DM’s induced posteriors can be strictly ranked. To ensure that

each message is meaningful or outcome relevant, we offer the following definition.

Definition 1 Two messages of agent i are said to be outcome equivalent if, regardless of the mes-

sage sent by agent j, sending either of the two messages always lead to the same outcome as to

which project is implemented. A set of messages of agent i is said to be irreducible if any pair of

messages in the set are not outcome equivalent.

We will mainly focus on the sets of messages (partitions) that are irreducible, since adding

additional outcome equivalent messages will not affect the outcome (unless introducing reducible

messages makes the analysis easier). Note that in the equilibria we derived earlier for symmetric

agents, the equilibrium sets of messages or (partitions) are irreducible, as sending different messages

for each agent will lead to different outcomes with some positive probability.

Recall that for all possible messages associated with an equilibrium the DM’s induced posteriors

can be strictly ranked. A particular ranking structure is described in the following definition.

Definition 2 A set of messages is said to have an alternating ranking structure between two agents

if (i) the messages having the highest, the 3rd highest, the 5th highest, and so on, posteriors belong

to agent i, and (ii) the messages having the 2nd highest, the 4th highest, the 6th highest, and so

on, posteriors belong to agent j.

The following lemma shows the relationship between irreducible sets of messages and the alter-

nating ranking structure.

Lemma 2 If a set of messages is irreducible, then (i) it must exhibit an alternating ranking struc-

ture, (ii) the total number of messages must fall into one of the following three cases: N1 = N2,

N1 = N2 + 1, and N2 = N1 + 1.

Proof. To show part (i), suppose two messages of consecutive overall rankings belong to the same

agent, say agent 1. These two messages are outcome equivalent, because which one of the two

messages is sent by agent 1 does not affect which project will be implemented: project 2 (1) is

implemented if agent 2 sends a higher (lower) message. Therefore, an irreducible set of messages

must exhibit an alternating ranking structure. Part (ii) immediately follows part (i), since an

alternating ranking structure implies that the total numbers of messages for two agents are either

the same (N1 = N2), or the total number of messages of one agent is that of the other agent plus

one (either N1 = N2 + 1 or N2 = N1 + 1).

Lemma 2 implies that the amount of meaningful information transmitted by two agents are

intimately related and cannot be too far apart. To understand the intuition, note that the DM’s

problem is to select the better project to implement, or it is the comparison of two projects’ returns

that matters. It means that, to improve the DM’s decision, both agents have to transmit more

11



information; and the DM’s decision will not improve if only one agent transmits more information.

To see this, consider an extreme case in which agent 1 has no bias (b1 = 0) and agent 2 has a very

large bias (b2 > 1). In this case, agent 1 will fully reveal his information and agent 2 will reveal no

information (babble). Note that although agent 1 fully reveals his information, given that agent

2 reveals no information, his information cannot be fully utilized by the DM in decision making.

Actually, the amount of information of agent 1 that can be utilized in decision making is at most

of two partitions: whether θ1 is below 1/2 (the unconditional mean of θ2), above 1/2. If agent 2

reveals more information (say has N partitions), then the meaningful amount of information that

can be transmitted by agent 2 increases as well (has N + 1 partitions).

In equilibrium, either agent 1 or agent 2 has the lowest overall message (with the lowest induced

posterior). Note that if an agent sends the lowest overall message, then that agent’s project will not

be implemented (the other agent’s project will be implemented) for sure regardless of the messages

sent by the other agent. That is, an agent sends the lowest overall message means that he “gives

up” on his own project. For that reason, we call the lowest overall message the “give-up option.”

Correspondingly, if an agent sends the highest overall message, then that agent’s project will be

implemented for sure. We call the highest overall message the “sure option.” Note that if the total

number of partitions is odd, then the same agent has both the give-up option and the sure option.

But if the total number of partitions is even, then one agent has the give-up option and the other

agent has the sure option.

Given the alternating ranking structure, we can classifiy asymmetric equilibria by which agent

has the give-up option or the lowest overall message. We call equilibria in which agent i has the

give-up option as agent-i-sacrificing (A-i-S) equilibria. Note that these two types of equilibria are

qualitatively similar (just switch the roles of two agents or b1 and b2). Alternatively, we can also

classify equilibria by which agent has the sure option. But it turns out that equilibrium features

depend more on which agent has the give-up option. For this reason, we use the give-up option to

classify equilibria.

In A-1-S equilibria either N1 = N2 (the total number of partitions is even) or N1 = N2 + 1

(the total number of partitions is odd). To see this, note that by part (ii) of Lemma 2, we

only need to rule out the case that N2 = N1 + 1. Since two agents’ messages have alternating

rankings and agent 1’s lowest message has the lowest ranking, if N2 = N1 +1 then the two highest

messages of agent 2 must have the highest rankings, which means that they are outcome equivalent.

Correspondingly, in A-2-S equilibria either N1 = N2, or N2 = N1 + 1. To summarize, there are

four types of asymmetric equilibria: A-1-S equilibria with even (total) number of partitions, A-1-S

equilibria with odd number of partitions, A-2-S equilibria with even number of partitions, and

A-2-S equilibria with odd number of partitions.

In this subsection we only study A-1-S equilibria with even number of partitions in detail,

and other types of equilibria will be studied in detail later. Consider an A-1-S equilibrium with

N1 = N2 = N . Suppose agent 1’s realized state is a1,n, 1 ≤ n < N . Agent 1 should be indifferent

between sending message mn
1 and message mn+1

1 . The indifference condition is written as:

a1,n + b1 =
1

2
(a2,n + a2,n+1). (6)
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For agent 1, whether sending mn
1 or mn+1

1 matters (which project will be implemented) only when

agent 2’s message is mn
2 . In that case, sending message mn+1

1 leads to project 1 being implemented

and agent 1’s payoff is a1,n+ b1, and sending message mn
1 leads to project 2 being implemented and

agent 1’s payoff is (a2,n + a2,n+1)/2. Similarly, the indifference condition that characterizes a2,n,

1 ≤ n < N , can be written as:

a2,n + b2 =
1

2
(a1,n + a1,n+1). (7)

Applying (6) and (7) recursively, we get

(a1,n+1 − a1,n)− (a1,n − a1,n−1) = 4b1 + 4b2 for 1 < n ≤ N − 1, (8)

(a2,n+1 − a2,n)− (a2,n − a2,n−1) = 4b1 + 4b2 for 1 ≤ n < N − 1.

a1,1 =
1

2
a2,1 − b1,

a2,N−1 =
1

2
(a1,N−1 + 1)− b2.

In (8), the last two difference equations apply to the first and last interior partition points respec-

tively, while the first two difference equations apply to other interior partition points.9 Note that

for most interior partition points, the difference equations for agent 1 are the same as those for

agent 2. This confirms that in equilibrium two agents transmit similar amount of information.

Another notable feature is that the incremental step size of each agent, which is 4b1+4b2, depends

on the biases of both agents. The solution to the above difference equation system is

a2,1 =
2− 4b2 − 2b1 − 4(b1 + b2)N(N − 2)

2N − 1
(9)

a1,1 =
1− 2b2 − 2Nb1 − 2(b1 + b2)N(N − 2)

2N − 1
a2,n = na21 + 2(b1 + b2)n(n− 1) for 1 < n ≤ N − 1

a1,n =
2n− 1

2
a21 − b1 + 2(b1 + b2)(n− 1)2 for 1 < n ≤ N − 1

Example 1 b1 = 0.02 and b2 = 0.05. The most informative A-1-S equilibrium, which has 6 total

partitions (each agent has 3 partitions), is illustrated in the following figure.

From Example 1, we see that the alternating ranking structure of two agents’ messages implies

that two agents’ partitions have the following alternating feature: for any interior partition points

ai,n, we either have ai,n ∈ (aj,n−1, aj,n) for all n, or have ai,n ∈ (aj,n, aj,n+1). The following

proposition summarizes the results we derived so far.

Proposition 2 There are four types of asymmetric equilibria. In A-1-S equilibrium with even

number of partitions, N1 = N2, and in A-1-S equilibrium with odd number of partitions, N1 = N2+

9The A-1-S equilibria with N1 = N2 + 1 is qualitatively similar to those with N1 = N2. In particular, the
difference equation applying to the last interior partition point is different, while all the other difference equations
are exactly the same.
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Agent 1

Agent 2

a10=0 a11=0.072 a12=0.396 a13=1

a20=0 a21=0.184 a22=0.648 a23=1

Figure 1: A-1-S odd number partitions

1; and in both types of equilibria, two agents’ partitions have the following alternating feature: a1,n ∈
(a2,n−1, a2,n) for all interior n, and a2,n ∈ (a1,n, a1,n+1) for all interior n. In A-2-S equilibrium

with even number of partitions, N1 = N2, and in A-2-S equilibrium with odd number of partitions

N2 = N1 + 1; and in both types of equilibria, two agents’ partitions have the following alternating

feature: a1,n ∈ (a2,n, a2,n+1) for all interior n, and a2,n ∈ (a1,n−1, a1,n) for all interior n.

Comparing the difference equations for the interior partition points, one can see that the par-

tition sizes increase a lot faster for asymmetric equilibria with asymmetric agents (the incremental

step size is 4b1 + 4b2) than symmetric equilibria with symmetric agents (the incremental step size

is 2b). Thus one would expect that symmetric equilibria with symmetric agents are much more

informative. However, it turns out that it is not the case. To illustrate the link between these two

types of equilibria, we reformulate asymmetric equilibria by introducing some reducible messages.

4.2 Quasi-symmetric equilibria

We first provide a definition of quasi-symmetric (pure strategy) equilibria (QSE).

Definition 3 QSE are equilibria with the following properties: two agents have the same partitions

(hence the same set of messages) and the DM implements one of the projects with probability 1

whenever two agents send the same message.

Since both agents have the same partitions, we let N ≥ 2 be the number of partitions and {an}
be the partition points. In the case that both agents send the same message mn (there is a tie),

denote the probability that agent 1 (2)’s project being adopted as λn (1−λn). Since we are talking

about pure strategy, λn is either 0 or 1.

Lemma 3 There is no QSE in which λn = λn+1 = 0 or λn = λn+1 = 1.

Proof. Since two agents’ situations are symmetric, we only need to rule out the case of λn =

λn+1 = 0 as an equilibrium. For agent 1 whose type is an, he should be indifferent between sending

messages mn and mn+1. Given that λn = λn+1 = 0, whether agent 1 sends messages mn or mn+1

matters for the outcome only if agent 2’s message is mn. In this case, if agent 1 sends message
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mn+1, then his expected payoff is an + b. If agent 1 sends message mn, then his expected payoff is

(an−1 + an)/2, which is strictly less than an + b. Thus the type an of agent 1 cannot be indifferent

and it cannot be an equilibrium.

Intuitively, if for two adjacent messages the DM’s tie-breaking rule always favors the same

agent by implementing his project with probability 1, then the marginal type of the disfavored

agent cannot be indifferent between sending two messages, since there is no cost of overstating for

him. By Lemma 3, in equilibrium for two adjacent messages the principal’s tie-breaking rule must

favor two agents alternatingly. That is, if λn = 0 then λn+1 = 1; and if λn = 1 then λn+1 = 0.

For this alternatingly favored tie-breaking rule, there are two possibilities: the first one starts with

λ1 = 0 and the second one starts with λ1 = 1. We call the first kind agent-1-sacrificing (A-1-S)

QSE and the second kind agent-2-sacrificing (A-2-S) QSE.

We first investigate A-1-S QSE. More explicitly, for odd n = 2k+1, λn = 0, and for even n = 2k,

λn = 1.10 Under these tie-breaking rules, note that for any odd (interior) partition points, agent

2’s indifference condition is always satisfied, while for any even (interior) partition points agent 1’s

indifference condition is always satisfied. To see this, pick an odd (interior) partition point, an,

n = 2k+1. Suppose agent 2’s type is an and consider the scenario that agent 1’s message is either

mn or mn+1. Since λn = 0 and λn+1 = 1, whether project 2 will be implemented does not depend

on whether agent 2 sends message mn or mn+1: if agent 1 sends message mn+1 then project 1 is

implemented for sure, and if agent 1 sends message mn then project 2 is implemented for sure.

Therefore, agent 2 is indifferent between sending messages mn and mn+1. Actually, for any type of

agent 2 within the interval (an−1, an+1), he is indifferent between sending messages mn and mn+1.

Similar logic applies to agent 1 for even (interior) partition points.

Now there are two sets of equilibrium conditions left: agent 1’s indifference conditions at odd

(interior) partition points, and agent 2’s indifference conditions at even (interior) partition points.

They can be explicitly written as

For n = 2k + 1: (an+1 − an−1)(an + b1) = (an+1 − an−1)
an+1 + an−1

2
, (10)

For n = 2k: (an+1 − an−1)(an + b2) = (an+1 − an−1)
an+1 + an−1

2
.

The above conditions can be simplified as

For n = 2k + 1: (an+1 − an)− (an − an−1) = 2b1, (11)

For n = 2k: (an+1 − an)− (an − an−1) = 2b2.

A-2-S QSE can be characterized in a similar way. In particular, for odd n = 2k+1, λn = 1, and

for even n = 2k, λn = 0. The binding equilibrium conditions are: agent 1’s indifference conditions

at even (interior) partition points, and agent 2’s indifference conditions at odd (interior) partition

10Basically, the priority of two projects whenever there is a tie switches alternatingly across messages, starting
with project 2 having priority when both agents send the lowest message.
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points. More specifically, the difference equations are as follows

For n = 2k: (an+1 − an)− (an − an−1) = 2b1, (12)

For n = 2k + 1: (an+1 − an)− (an − an−1) = 2b2.

Note that under QSE agents’ messages are not irreducible. To see this, consider an A-1-S QSE

with 3 partitions (messages) for each agent. For agent 1, the two highest messages are outcome

equivalent11, and for agent 2 the two lowest messages are outcome equivalent. If we combine all

outcome equivalent messages for each agent, then a QSE becomes an asymmetric equilibrium. The

following lemma shows that there is a one-to-one correspondence between asymmetric equilibria

and QSE.

Lemma 4 (i) For any A-i-S asymmetric equilibrium with partition points (a1, a2), combine all

interior points of a1 and a2 and the two boundary points of 0 and 1, and rearrange them into an

increasing sequence a′. Then there is an A-i-S QSE with partition points a′. (ii) For any A-i-S

QSE with partition points a, combine all outcome equivalent messages for each agent, and let the

resulting partition points be (a′1, a
′
2). Then there is an A-i-S asymmetric equilibrium with partition

points (a′1, a
′
2).

Proof. We only need to show the claims hold for A-1-S equilibria, since the situations for A-2-S

equilibria are similar.

Part (i). Consider an A-1-S asymmetric equilibrium with N1 = N2 = N , and the partition

points being (a1, a2). For partition points a′ constructed from (a1, a2) according to the procedure

stated in the lemma, a′ has 2N − 2 interior partition points. We argue that there is an A-1-S

QSE with a′ being each agent’s partition points. In particular, each agent has 2N − 1 partitions.

Specifically, for odd n′, interior partition point a′n′ = a
1,n

′+1
2

; and for even n′, interior partition

point a′n′ = a
2,n

′
2

. Observing the indifference conditions, we see that (6) and (7) for the asymmetric

equilibrium are exactly the same as (10) for QSE. Therefore, there is an A-1-S QSE with partition

points a′.

By similar logic, we can show that for an A-1-S asymmetric equilibrium with N1 = N and

N2 = N − 1, there is a corresponding QSE with 2N − 2 partitions for each agent.

Part (ii). The opposite direction can be proved in a similar way, since the indifference conditions

for two kinds of equilibria are essentially the same.

By Lemma 4, the set of asymmetric equilibria and the set of QSE are essentially the same.

Although our focus is on asymmetric equilibria, we will solve for QSE since they are easier to

characterize.

Example 2 The following figure illustrates the QSE corresponding to the A-1-S asymmetric equi-

librium in Example 1. In the QSE both agents have 5 partitions, and the brackets indicate how to

group these partitions into the partitions of asymmetric equilibrium.

11As long as agent 1 sends one of his two highest messages, if agent 2 sends his highest message then project 2 is
always implemented, and otherwise project 1 is always implemented.
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Agent 1
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Figure 2: The Equivalence between QSE and Asymmetric Equilibrium

Based on the proof of Lemma 4, we summarize the correspondence between asymmetric equi-

libria and QSE in the following table.

Table 1: The Correspondence between Asymmetric Equilibria and QSE

Asymmetric equilibria Corresponding QSE

A-1-S with 2N partitions A-1-S with 2N − 1 partitions

A-1-S with 2N − 1 partitions A-1-S with 2N − 2 partitions

A-2-S with 2N partitions A-2-S with 2N − 1 partitions

A-2-S with 2N − 1 partitions A-2-S with 2N − 2 partitions

Now we characterize QSE. For A-1-S QSE, solving the difference equations of (11), for even N

we have

a1 =
1

N
− N

2
b1 − (

N

2
− 1)b2.

The upper bound of N , denoted as N
A1S
E , is the largest even integer N that satisfies the following

inequality:
N2

2
b1 +N(

N

2
− 1)b2 < 1. (13)

Similarly, for odd N the difference equations of (11) yield

a1 =
2− (N − 1)(N + 1)b1 − (N − 1)2b2

2N
. (14)

The upper bound of N , denoted as N
A1S
O , is the largest odd integer N that satisfies the following

inequality
(N − 1)(N + 1)

2
b1 +

(N − 1)2

2
b2 < 1. (15)
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The largest number of equilibrium partitions, denoted as N
A1S

, can be simply found as N
A1S

=

max{NA1S
E , N

A1S
O }.

Just like other cheap talk models, there are multiple equilibria even for A-1-S equilibria. Specif-

ically, given N
A1S

, for any integer N such that 1 ≤ N < N
A1S

, there is an A-1-S equilibrium with

N partitions. This is because, for such an N , (13) is satisfied if N is even and (15) is satisfied

if N is odd. Following the cheap talk literature, our main focus will be on the most informative

equilibrium.

The equilibrium expected payoff of the DM, E(Up(N)), can be written as:

E(UA1S
p (N)) =

1

2

N∑
n=1

[(an − an−1)an(an + an−1) + (an − an−1)(1− a2n)],

which can be explicitly calculated as

E(UA1S
p (N)) =


2
3 − 1

6N2 −
(b1+b2)

2

4
N2−(b1+b2)2+3b21

6 N even

2
3 +

(b2−b1−1)b21+(4−b2)b1b2+(b2−1)b22
12 + b1−b2−1

24 [ (b1−b2+2)2

N2 + (b1 + b2)
2N2] N odd

.

(16)

From the expression of (16), it is easy to verify that the equilibrium expected payoff of the DM

is increasing in N (for N < N
A1S

), and decreasing in both b1 and b2. In QSE, the loss of the DM’s

expected payoff is again due to the possibility of tie: when two agents send the same message, one

project is chosen while the other one could have a higher return. Note that when b1 = b2, the

partitions in QSE become the same as those in the symmetric equilibrium with symmetric agents,

though the tie-breaking rules in two equilibria are still different. Also, when b1 = b2, the expected

payoff of the DM under QSE, E(UA1S
p (N)), and that under the symmetric equilibrium, E(Up(N)),

are the same.12

The characterization of A-2-S QSE is very similar to that of A-1-S QSE, with the role of two

agents (or b1 and b2) being switched. Specifically, let N
A2S
E be the largest even integer N that

satisfies the following inequality:

N2

2
b2 +N(

N

2
− 1)b1 < 1. (17)

And let N
A2S
O be the largest odd integer N that satisfies the following inequality

(N − 1)(N + 1)

2
b2 +

(N − 1)2

2
b1 < 1. (18)

Moreover, the largest number of equilibrium partitions, denoted as N
A2S

, can be simply found as

N
A2S

= max{NA2S
E , N

A2S
O }. Finally, the DM’s expected payoff is

12As long as the partitions are the same, the tie-breaking rules do not affect the DM’s expected payoff since two
projects have the same expected return conditional on the same message sent.
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E(UA2S
p (N)) =


2
3 − 1

6N2 −
(b1+b2)

2

4
N2−(b1+b2)2+3b22

6 N even

2
3 +

(b1−b2−1)b22+(4−b1)b1b2+(b1−1)b21
12 + b2−b1−1

24 [ (b2−b1+2)2

N2 + (b1 + b2)
2N2] N odd

.

(19)

Since our focus is the most informative equilibrium, now we study the following question:

under what circumstances the most informative QSE is an A-1-S QSE? In other words, in the most

informative equilibrium should the agent of a smaller bias always have the give-up option? To

proceed, the next lemma compares A-1-S QSE and A-2-S QSE.

Lemma 5 (i) The number of partitions in the most informative A-1-S QSE is weakly larger than

that of the most informative A-2-S QSE: N
A2S ≤ N

A1S ≤ N
A2S

+ 1. (ii) For equilibria with the

same number of partitions N , with N being even, an A-1-S QSE is more informative (leads to

a higher E(Up(N))) than an A-2-S QSE. (iii) For equilibria with the same number of partitions

N > 1, with N being odd, an A-2-S QSE is more informative than an A-1-S QSE.

Proof. Part (i). Inspecting (13) and (17), for the same even N we can see that the LHS of the

inequality is larger under an A-2-S QSE than under an A-1-S QSE, since b1 < b2. By (15) and

(18), the same pattern holds for odd N . Therefore, we must have N
A2S ≤ N

A1S
. To show that

N
A1S ≤ N

A2S
+ 1, first consider the case that N is even. Note that the LHS of (13) with N is

larger than the LHS of (18) with N − 1. Thus, if N
A1S

is even, then N
A1S ≤ N

A2S
+ 1. When N

is odd, it can be verified that the LHS of (15) with N is larger than the LHS of (17) with N − 1.

Thus, if N
A1S

is odd, then N
A1S ≤ N

A2S
+ 1.

Part (ii). Consider an A-1-S QSE and an A-2-S QSE with the same even N . By (16) and (19),

for even N , E(UA1S
p (N))−E(UA2S

p (N)) = (b22 − b21) > 0. This implies that the A-1-S QSE is more

informative than the A-2-S QSE.

Part (iii). Consider an A-1-S QSE and an A-2-S QSE with the same odd N . By (16) and (19),

for odd N , we have

E(UA1S
p (N))− E(UA2S

p (N)) ∝ 2[(b32 − b31) + b1b2(b1 − b2)] +
(b1 − b2)

3

N2
+ (b1 − b2)(b1 + b2)

2N2

< 2(b32 − b31) + (b1 − b2)(b1 + b2)
2N2 < 0,

where the last inequality uses the fact that N ≥ 3 (informative equilibrium). Therefore, the A-2-S

QSE is more informative than the A-1-S QSE.

To understand the intuition behind Lemma 5, we compare the patterns of partitions between

two types of equilibria. Specifically, let {an} and {a′n} be the sequence of partition points, and let

the size of nth partition be a1 +∆n and a′1 +∆′
n (∆1 = ∆′

1 = 0), for A-1-S QSE and A-2-S QSE,

respectively. The term ∆n can be interpreted as the incremental partition size of the nth partition

relative to the size of the first partition. By the difference equations (11), for A-1-S QSE ∆n follows

the following pattern: 0, 2b1, 2b1 + 2b2, 4b1 + 2b2, 4b1 + 4b2, .... By the difference equations (11),

for A-2-S QSE ∆′
n follows the following pattern: 0, 2b2, 2b1 + 2b2, 2b1 + 4b2, 4b1 + 4b2, .... From

these patterns we can see that, in A-1-S QSE b1 enters into the incremental step size more often
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than b2 does, while in A-2-S QSE it is the opposite. This implies that, compared to A-2-S QSE, in

A-1-S QSE the partition sizes increase more slowly, which potentially allows more partitions.

The partition patterns imply that, for odd n we have ∆n = ∆′
n, and for even n we have

∆′
n −∆n = 2(b2 − b1) > 0. We first consider the case that both A-1-S QSE and A-2-S QSE have

the same even number, N , of partitions. By the fact that the total length of all partitions must be

1, we have

N(a1 − a′1) +
N∑

n=1

(∆n −∆′
n) = 0. (20)

Since N is even, (20) implies that a1 − a′1 = b2 − b1 > 0. For 1 < n < N , we have

an − a′n = n(a1 − a′1) +

n∑
j=1

(∆j −∆′
j). (21)

Using the fact that a1 − a′1 = b2 − b1 and the cyclical pattern of ∆j −∆′
j , we conclude that, for n

odd an > a′n, and for n even an = a′n. Given this pattern, on average A-1-S QSE leads to relatively

more even partitions. Recall that more even partitions reduce the ex ante probability of tie (two

agents send the same message), which is the soruce of inefficiency. Therefore, A-1-S QSE results in

a higher expected payoff for the DM.

Example 3 b1 = 0.06, b2 = 0.08. The most informative A-1-S QSE and A-2-S QSE are illustrated

in the following figure. Both equilibria have 4 partitions. The partition points a2 are the same under

two equilibria, but a1 and a3 are bigger under A-1-S QSE than those under A-2-S QSE. Therefore,

overall the partition under A-1-S QSE is more even.

A-1-S QSE

a0=0 a2=0.22 a3=0.55 a4=1a1=0.05

a0=0 a2=0.22 a3=0.53 a4=1a1=0.03

A-2-S QSE

Figure 3: A-1-S QSE Has More Even Partitions

Now consider the case that both A-1-S QSE and A-2-S QSE have the same odd number, N , of

partitions. Since N is odd, (20) implies that a1 − a′1 = (b2 − b1)(N − 1)/N . Now by (21), for odd

n we have:

an − a′n = n
N − 1

N
(b2 − b1)− (n− 1)(b2 − b1) > 0.
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And for even n we have:

an − a′n = n
N − 1

N
(b2 − b1)− n(b2 − b1) < 0.

The above inequalities indicate the following pattern. For two adjacent partitions starting with an

odd partition, the partitions under A-1-S QSE are more even. However, for two adjacent partitions

starting with an even partition, the partitions under A-2-S QSE are more even. Since the total

number of partitions is odd, for the last two partitions the partitions under A-2-S QSE are more

even. Because the partitions are increasing in size, making larger partitions more even are more

important.13 Therefore, A-2-S QSE leads to more even partitions and is more informative overall.

Example 4 b1 = 0.1, b2 = 0.16. The most informative A-1-S QSE and A-2-S QSE are illustrated

in the following figure. Both equilibria have 3 partitions. Compared to the A-1-S QSE, for the

A-2-S QSE, though the first partition size is smaller, the sizes of the second and third partitions

are closer, which leads to more even partitions overall. In particular, E(UA2S
p ) = 0.626559, which

is greater than E(UA1S
p ) = 0.623871.

A-1-S QSE

a0=0 a2=0.387 a3=1a1=0.093

a0=0 a2=0.427 a3=1a1=0.053

A-2-S QSE

Figure 4: A-1-S QSE and A-2-S QSE

The following lemma identifies conditions under which the most informative equilibrium is A-1-S

QSE or A-2-S QSE.

Lemma 6 (i) If the most informative A-1-S QSE has an even number of partitions, then it must

be the most informative QSE. (ii) Suppose the most informative A-1-S QSE has an odd number

of partitions, and the most informative A-2-S QSE has a smaller number of partitions. Then the

most informative QSE must be the most informative A-1-S QSE. (iii) Suppose the most informative

A-1-S QSE and the most informative A-2-S QSE have the same odd number of partitions, then the

most informative QSE must be the most informative A-2-S QSE.

13The ex ante probability of tie depends more heavily on the size of the largest partition. That is why making the
larger partitions more even, which reduces the size of the largest partition, is more important.
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Proof. Part (i). Suppose the most informative A-1-S QSE has an even number of partitions, say

N . By Part (i) of Lemma 5, the number of partitions in the most informative A-2-S QSE can be

either N or N − 1. In the first case, the most informative A-1-S QSE is the most informative QSE

by part (ii) of Lemma 5. In the latter case, the most informative A-1-S QSE is obviously more

informative than the most informative A-2-S QSE.

Part (ii). Let N , which is odd, be the number of partitions in the most informative A-1-S QSE.

Consider the case that the most informative A-2-S QSE has N − 1 partitions. By previous results,

we have E(UA1S
p (N)) − E(UA1S

p (N − 1)) > 0. Since N − 1 is even, by part (ii) of Lemma 5, we

have E(UA1S
p (N − 1))−E(UA2S

p (N − 1)) > 0. Combining the above two inequalities, we conclude

that E(UA1S
p (N))−E(UA2S

p (N − 1)) > 0. Therefore, the most informative A-1-S QSE is the most

informative QSE.

Part (iii). It directly follows part (iii) of Lemma 5.

4.3 Properties of asymmetric equilibria

Now we go back to examine the properties of asymmetric equilibria. One property worth

emphasizing is that for the agent who has the highest overall message, his highest partition might

be smaller than his second highest partition. Recall example 1, in which agent 2 has the highest

overall message. The size of agent 2’s highest partition (the 3rd partition) is 0.352, which is smaller

than the size of the second highest partition (2nd partition), 0.464.14 This is very different from

standard cheap talk models, in which the sizes of partitions are always increasing in the direction

of agents’ biases. This property is due to the competitive nature of cheap talk. For the highest

marginal type of the agent who has the highest overall message, to make that type indifferent

between sending two adjacent messages, only the size of the highest partition of the other agent

matters and the size of the highest partition of himself does not matter.

In asymmetric equilibria, since there is no possibility of tie of messages, the source of inefficiency

is that two agents’ adjacent partitions overlap. This means that conditional on two agents send

two adjacent messages, while one agent’s message have a higher posterior (ranking) and thus this

agent’s project getting implemented, the other agent’s realized return might be higher. Translat-

ing asymmetric equilibria to corresponding QSE, the inefficiency due to overlapping partitions is

equivalent to the inefficiency due to ties when additional messages are introduced.

Corollary 1 Fixing bi, the DM’s expected payoff in the most informative equilibrium is decreasing

in bj.

Proof. Given the symmetry of two agents’ situations, we only need to show that the claim holds

for agent 2. Fix b1, and suppose b2 decreases to b′2 < b2. It is enough to show that the DM’s payoff

in the most informative A-1-S equilibrium and that in the most informative A-2-S equilibrium both

increase. Consider A-1-S equilibria first. Since b′2 < b2, by previous results N
A1S ≤ N

′A1S
. If

N
A1S

< N
′A1S

, then in the most informative equilibrium the DM’s payoff must be higher under

b′2. If N
A1S

= N
′A1S

, by (16), again in the most informative equilibrium the DM’s payoff is higher

14It can be verified that, for the agent who does not have the highest overall message, the partition sizes are
monotonically increasing. And for the agent who has the highest overall message, the partition sizes are always
monotonically increasing up to the second highest message.
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under b′2. Similarly, one can show that the DM’s payoff in the most informative A-2-S equilibrium

is higher under b′2.

A result stronger than Corollary 1 holds: both agents will transmit more information in the most

informative equilibrium if one agent’s bias decreases. Thus in some sense two agents’ information

transmissions are strategic complements.15 This feature is also present in the two-sender cheap talk

model of McGee and Yang (2013), but for a different reason. The reason for this property to arise

in the current model is again due to the competitive nature of cheap talk. Intuitively, one agent

will exaggerate less and transmit more information if he has a smaller bias. As mentioned earlier,

since only the comparison between two agents’ projects matters, the finer information transmitted

by one agent allows the other agent to be able to transmit more meaningful information.

Now we study under what conditions the most informative asymmetric equilibrium is an A-1-S

equilibrium, or agent 1 has the give-up option. Given the correspondence between asymmetric

equilibria and QSE, the following proposition directly follows Lemma 5 and Lemma 6.

Proposition 3 (i) Suppose the total number of partitions in the most informative A-2-S asymmet-

ric equilibrium is N , then the total number of partitions in the most informative A-1-S asymmetric

equilibrium is either N or N + 1. (ii) If in the most informative A-1-S asymmetric equilibrium

the total number of partitions is odd, then the most informative A-1-S equilibrium is the most

informative equilibrium. (iii) If in the most informative A-1-S asymmetric equilibrium the total

number of partitions is even, say 2N , and in the most informative A-2-S asymmetric equilibrium

the total number of partitions is 2N − 1, then the most informative A-1-S equilibrium is the most

informative equilibrium. (iv) If the most informative A-1-S asymmetric equilibrium and the most

informative A-2-S asymmetric equilibrium have the same total even number of partitions, then the

most informative A-2-S equilibrium is the most informative equilibrium.

Proposition 3 directly implies the following corollary.

Corollary 2 In the most informative equilibrium: (i) it is not always the case, but it is more likely,

that the agent with a smaller bias has the give-up option; (ii) it is not always the case, but it is

more likely, that the agent with a smaller bias has the sure option; (iii) relative to the agent who

has a bigger bias, the agent with a smaller bias either has the same number of messages or has

one more message; (iv) while it is possible for the agent with a smaller bias to have the give-up

option and sure option at the same time, it is impossible for the agent with a bigger bias to have

both options at the same time.

Proof. By Proposition 3, the most informative equilibrium could be one of the following three

equilibria: A-1-S equilibrium with odd number of partitions, A-1-S equilibrium with even number

of partitions, A-2-S equilibrium with even number of partitions. Agent 1 has the give-up option in

two out of three scenarios, thus he is more likely to have the give-up option. In terms of the sure

option, agent 1 has the sure option in the first type and third type of equilibria, while agent 2 has

the sure option in the second type of equilibria. Therefore, it is more likely for agent 1 to have the

15The technical reason is that, as mentioned earlier (euqations (9)), the incremental step size of the interior
partitions for each agent is 4b1+4b2. This implies that, when one agent’s bias decreases, then in the most informative
equilibrium the other agent’s number of partitions will weakly increase and his partitions will become more even.
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sure option. This proves parts (i) and (ii). As to part (iii), note that in the first type of equilibria

agent 1 has one more message than agent 2 does, while in other two types of equilibria both agents

have the same number of messages. Regarding part (iv), in the first type of equilibria agent 1 has

both the give-up option and the sure option, while in the second and third types of equilibria two

agents split the give-up option and the sure option.

The agent having the give-up option can be interpreted as being trustworthy for (ruling out) low

return projects, and the agent having the sure option being trustworthy for high return projects.

Note that being trustworthy is endogenous. With these interpretations, Corollary 2 implies that in

the most informative equilibrium the agent with a smaller bias is chosen to be trustworthy more

often not only for low return projects but also for high return projects. Actually, the agent with a

smaller bias must be trustworthy for at least one end (either the low end, or the high end, or both).

Moreover, while the agent with a smaller bias could be trustworthy for both low return projects

and high return projects at the same time, it is never the case for the agent with a bigger bias.

Part (iii) of Corollary 2 indicates that in the most informative equilibrium the agent with a smaller

bias has weakly more messages or partitions.16 These predictions are potentially testable.

In the following figure, quantitatively we illustrate the frequency of each type of equilibrium be-

ing the most informative equilibrium. Specifically, the blue (yellow, red) areas are the combinations

of the biases such that an A-1-S equilibrium with even number of partitions (A-1-S equilibrium

with odd number of partitions, A-2-S equilibrium with even number of partitions) is the most

informative equilibrium. The figure shows that overall the most informative equilibrium is more

likely to be an A-1-S equilibrium, as the blue and yellow areas are significantly bigger than the red

areas.

The most informative equilibrium might not be Pareto dominant: while it is clear that the DM

always prefers the most informative equilibrium, the two agents might prefer different equilibria as

they also take into account the probabilities that their own projects will be implemented. The ex

ante probabilities that each project will be implemented in different equilibria are characterized in

the following Proposition.

Proposition 4 (i) In A-i-S asymmetric equilibrium with the total number of partitions being odd,

the ex ante probability that project i (j) is implemented is strictly greater (less) than 1/2. (ii) In

A-i-S asymmetric equilibrium with the total number of partitions being even, the ex ante probability

that project i (j) is implemented is strictly less (greater) than 1/2.

Proof. Since the situations of A-1-S and A-2-S equilibria are similar, we only prove the claims for

A-1-S equilibria.

Part (i). Consider a corresponding A-1-S QSE with an even number (say 2N) of partitions.

Since the returns of the two projects have the same distribution, the probability that θ1 lies in

a higher partition than θ2 does is the same as the probability that θ2 lies in a higher partition

than θ1 does. Therefore, we only need to consider the situations that both θ1 and θ2 lie in the

same partition (or ties). Recall that the alternating tie-breaking rule favors agent 2 for (2n− 1)th

partition, and favors agent 1 for (2n)th partition. Given that in total there are 2N partitions,

16However, in the most informative equilibrium the agent with a smaller bias could transmit less amount of
information than the other agent does. When the most informative equilibrium is an A-1-S equilibrium with even
number of partitions, agent 2’s partitions are more even and hence he transmits more information than agent 1 does.
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Figure 5: The Most Informative Equilibrium and the Biases

we can group all 2N partitions into N pairs, with each pair containing two adjacent partitions:

(2n − 1)th partition and (2n)th partition. Since the partition sizes are increasing, ties for higher

partitions are more likely. This implies that for each pair of partitions, project 1 is more likely

to be implemented than project 2 is. Therefore, overall project 1 (2) will be implemented with a

probability strictly greater (less) than 1/2.

Part (ii). Consider a corresponding A-1-S QSE with an odd number (say 2N +1) of partitions.

The proof is similar to that of part (i). The only difference is that we need to use different grouping.

Given that in total there are 2N + 1 partitions, we can group the 2N highest partitions into N

pairs, with each pair containing two adjacent partitions: (2n)th partition and (2n+1)th partition.

Since the partition sizes are increasing, ties for higher partitions are more likely. This implies that

for each pair of partitions, project 2 is more likely to be implemented than project 1 is. Moreover,

in the 1st partition project 2 is favored. Therefore, overall project 2 (1) will be implemented with

a probability strictly greater (less) than 1/2.

The results of Proposition 4 can be restated in a more compact way. In any equilibrium, the

project of the agent who has the sure option (the highest overall message) always has an ex ante

probability bigger than 1/2 of being implemented. Therefore, all other things being equal, each

agent prefers to have the sure option. The intuition for this result is that in QSE the partition

sizes are monotonically increasing. Given that the agent who has the sure option is favored in the

highest partition, and the tie-breaking rule is alternatingly favored, the project of the agent who

has the sure option is favored in larger combined intervals.

Since the most informative equilibrium might not be Pareto dominant, we cannot invoke Pareto

dominance to select the most informative equilibrium. However, we argue that more informative

equilibria are the more reasonable ones, based on equilibrium refinement by introducing out of
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equilibrium messages. The details of the equilibrium refinement can be found in the Appendix.

Is the DM able to select A-1-S equilibria or A-2-S equilibria? The answer is yes if the DM

is able to commit. For example, suppose the DM wants to select A-1-S equilibria. To achieve

that, the DM can commit to the following: if both agents send the lowest messages, then project

2 will be implemented. Given this commitment, A-2-S equilibria will no longer be equilibrium

as the indifference conditions are messed up, but A-1-S equilibria are not affected and remain as

equilibrium.

4.4 Comparative Statics

In this subsection we study the following question: fixing the total bias of two agents (b1 + b2),

does the DM prefer two agents having relatively equal biases or relatively unequal biases? For that

purpose, we fix b1 + b2 = 2b, and let b2 − b1 = 2d be the difference of the biases, 0 ≤ d ≤ b. Note

that b2 = b + d and b1 = b − d. As d increases, two agents’ biases become further apart. We are

interested in how the DM’s expected payoff in the most informative equilibrium will change as d

changes. Specifically, consider d′ > d. And we use superscript ′ to denote the endogenous variables

under d′.

Lemma 7 (i) For A-1-S asymmetric equilibrium, either N
A1S′

= N
A1S

or N
A1S′

= N
A1S

+ 1.

For A-2-S equilibrium, either N
A2S′

= N
A2S

or N
A2S′

= N
A2S − 1. (ii) For A-1-S asymmetric

equilibrium, if N
A1S

(under the initial d) is odd, then E(UA1S′
p ) > E(UA1S

p ). If N
A1S

is even, then

E(UA1S′
p ) > E(UA1S

p ) if N
A1S′

= N
A1S

+ 1, and E(UA1S′
p ) < E(UA1S

p ) if N
A1S′

= N
A1S

. (iii) For

A-2-S asymmetric equilibrium, if N
A2S′

= N
A2S−1, then E(UA2S′

p ) < E(UA2S
p ). If N

A2S′
= N

A2S

and N
A2S

is odd, then E(UA2S′
p ) < E(UA2S

p ). If N
A2S′

= N
A2S

and N
A2S

is even, E(UA2S′
p ) could

either be smaller or bigger than E(UA2S
p ).

Proof. For convenience, we translate asymmetric equilibria into the corresponding QSE.

Part (i). Rearrange the inequalities regarding the number of partitions of A-1-S QSE, (13) and

(15), we get

(N2 −N)b−Nd < 1 for even N,

[(N − 1)2 + (N − 1)]b− (N − 1)d < 1 for odd N.

Since the LHS of the above inequalities is decreasing in d, it follows that N
A1S′

≥ N
A1S

. Since

d ≤ b, N
A1S′

≤ N
A1S

+ 1. Therefore, either N
A1S′

= N
A1S

, or N
A1S′

= N
A1S

+ 1. In similar

fashion, we can show that, for A-2-S QSE, either N
A2S′

= N
A2S

or N
A2S′

= N
A2S − 1.

Part (ii). For A-1-S QSE, suppose the initial N
A1S

is even. By part (i) there are two cases to

consider. In the first case that N
A1S′

= N
A1S

+ 1, it is obvious that E(UA1S′
p ) > E(UA1S

p ). In the

second case that N
A1S′

= N
A1S

, by (16) the only term in E(UA1S
p ) (for N

A1S
even) that depends

on d is −(b− d)2/2, which is increasing in d. Therefore, E(UA1S′
p ) > E(UA1S

p ).

Now suppose the initial N
A1S

is odd. If N
A1S′

= N
A1S

+1, then it is obvious that E(UA1S′
p ) >

E(UA1S
p ). Now suppose N

A1S′
= N

A1S
. By (16) the only term in E(UA1S

p ) (for N
A1S

odd) that
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depends on d is as follows:

E(UA1S
O (N)) ∝ −(2b2dN2 + 3d2 − 2d3),

which is decreasing in d since d < 1. Therefore, E(UA1S′
p ) < E(UA1S

p ).

Part (iii). For A-2-S QSE, by part (i) there are two cases to consider. In the first case that

N
A2S′

= N
A2S−1, it is obvious that E(UA2S′

p ) > E(UA2S
p ). Now consider the second case in which

N
A2S′

= N
A2S

. Suppose N
A2S

is even. By (19) the only term in E(UA2S
p ) that depends on d is

−(b+d)2/2, which is decreasing in d. Therefore, E(UA2S′
p ) < E(UA2S

p ). Now suppose N
A2S

is odd.

By (19) the only term in E(UA2S
p ) that depends on d is as follows:

E(UA2S
O (N)) ∝ d(2b2N2 − 3d− 2d2).

By this equation, E(UA2S
p ) increases in d if and only 2b2(N

A2S
)2 − 6d − 6d2 > 0. But the sign of

this inequality cannot be determined.

To understand the intuition of Lemma 7, first consider A-1-S QSE. Recall that the incremental

partition size ∆n follows the following pattern: 0, 2b1, 2b1 + 2b2, 4b1 + 2b2, 4b1 + 4b2, .... We can

see that, as two agents’ biases become further apart (d increases), while the incremental partition

sizes of odd number of partitions do not change, those of even number of partitions decreases since

b1 decreases. Therefore, the maximum number of partitions will either stay the same or increase

by 1. If the maximum number of partitions under the initial d is even and it stays the same as d

increases, the reason that the DM’s expected payoff in the most informative equilibrium increases

is as follows. Recall that the DM’s expected payoff is increasing if the two largest partitions become

more even. When the total number of partitions is even, the difference between the sizes of the two

largest partitions is 2b1. This means that an increase in d leads to overall more even partitions. For

the same reason, when the maximum number of partitions under the initial d is odd and it stays

the same as d increases, an increase in d makes the two largest partitions more uneven, leading to

a lower expected payoff to the DM.

Now consider A-2-S QSE. Recall that the incremental partition size ∆n follows the following

pattern: 0, 2b2, 2b1 + 2b2, 2b1 + 4b2, 4b1 + 4b2, .... We can see that, as d increases, while the

incremental partition sizes of even number of partitions do not change, those of odd number of

partitions increase since b2 increases. Therefore, the maximum number of partitions will either

stay the same or decrease by 1.

Proposition 5 (i) If initially the most informative asymmetric equilibrium is A-1-S and N
A1S

is

odd, then an increase in d makes the DM better off in the most informative equilibrium. (ii) If

initially the most informative asymmetric equilibrium is A-1-S and N
A1S

is even, then an increase

in d could makes the DM either better off or worse off in the most informative equilibrium. (iii) If

initially the most informative asymmetric equilibrium is A-2-S, then an increase in d could makes

the DM either better off or worse off in the most informative equilibrium.

Proof. For convenience, we again translate asymmetric equilibria into the corresponding QSE.
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Part (i). Let d′ > d. By part (i) of Lemma 7, either N
A1S′

= N
A1S

+ 1 or N
A1S′

= N
A1S

.

In the first case, N
A1S′

> N
A2S′

since N
A2S′

≤ N
A2S ≤ N

A1S
. Therefore, the most informative

equilibrium is still the most informative A-1-S equilibrium. By part (ii) of Lemma 7, E(UA1S′
p ) >

E(UA1S
p ). It follows that under d′ the DM is better off in the most informative equilibrium.

Part (ii). Let d′ > d. If N
A1S′

= N
A1S

+ 1, since N
A1S′

is even, under d′ the most informative

equilibrium must be A-1-S. In this case, an increase in dmakes the DM better off. If N
A1S′

= N
A1S

,

we first argue that the most informative equilibrium under d′ is still A-1-S. By the fact that under d

the most informative equilibrium is A-1-S and N
A1S

is odd, we must have N
A2S

= N
A1S − 1, since

otherwise the most informative equilibrium would have been A-2-S. Now by part (i) of Lemma

7, N
A2S′

< N
A1S′

, which implies that the most informative equilibrium under d′ is still A-1-S.

Applying part (ii) of Lemma 7, we have E(UA1S′
p ) < E(UA1S

p ).

Part (iii). The proof or construction of both cases is similar to that of part (ii), and thus is

omitted.

Proposition 5 implies that in the most informative equilibrium making two agents’ biases more

unequal does not always improve or reduce the DM’s expected payoff: sometimes it is better for

two agents to have relatively equal biases and sometimes it is the opposite. In the following figure

(b1 + b2 = 0.196), as d increases from 0 to 0.043, the most informative equilibrium is an A-2-S

equilibrium with even number of partitions, and the DM’s payoff first increases then decreases. For

d bigger than 0.043, the most informative equilibrium is an A-1-S equilibrium with odd number of

partitions, and the DM’s payoff increases with d.
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Figure 6: DM’s Payoff as Biases Become More Unequal

Although in most cases the DM’s expected payoff in the most informative equilibrium decreases

with a larger total bias, it is possible that the DM’s expected payoff could increase as the total bias

increases, if the distribution of biases change as well. This is illustrated in the following example.
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Example 5 . Suppose b1 = 0.151 and b2 = 0.175. The most informative equilibrium is the A1SO

equilibrium with 3 partitions (the A2SO equilibrium with 3 partitions does not exist) , and E(Up) =

0.6118. Suppose b1 = 0.154 and b2 = 0.173. Note that, compared to the former case, b1 increases, b2

decreases, and the total bias increases. The most informative equilibrium is the A2SO equilibrium

with 3 partitions (the A1SO equilibrium with 3 partitions still exists), and E(Up) = 0.6131. That

is, the DM’s expected payoff increases.

5 Sequential Communication and Delegation

5.1 Sequential communication

Now we consider the situation in which two agents communicate sequentially to the DM. In the

first stage, one agent sends a message, which is publicly observable. Then, in the second stage, the

other agent sends a message. Finally, the DM decides which project to implement. Note that there

are two possible arrangements: either agent 1 sends message first or agent 2 sends message first.

Denote agent i as the agent who moves first and agent j as the agent who moves second. A

strategy for agent i specifies a message mi for each θi, which is denoted as the communication rule

µi(mi|θi). A strategy for agent j specifies a message mj for each pair of θj and mi, which is denoted

µj(mj |θj ,mi). A strategy for the DM specifies an action d for each message pair (mi,mj), which is

denoted as decision rule d(mi,mj). The DM’s posterior beliefs on θi and θj after hearing messages

are denoted as belief functions gi(θi|mi) and gj(θj |mj ,mi).

A Perfect Bayesian Equilibrium (PBE) requires:

(i) Given the DM’s decision rule d(m1,m2) and agent j’s communication rule µj(mj |θj ,mi),

agent i’s communication rule µi(mi|θi) is optimal.

(ii) Given the DM’s decision rule d(m1,m2), agent i’s communication rule µi(mi|θi), and agent

i message mi, agent j’s communication rule µj(mj |θj ,mi) is optimal.

(iii) The DM’s decision rule d(m1,m2) is optimal given beliefs gi(θi|mi) and gj(θj |mj ,mi).

(iv) The belief functions gi(θi|mi) and gj(θj |mj ,mi) are derived from the agents’ communication

rules µi(mi|θi) and gj(θj |mj ,mi) according to Bayes rule whenever possible.

Denote mi as the posterior induced by agent i’s message mi: mi ≡ E[θi|mi].

Lemma 8 In PBE the following properties hold. (i) Given any message of agent i, mi, agent j,

who moves second, has at most two irreducible messages: message h and l. (ii) Under message

h, agent j’s project is implemented with probability 1 generically; and under message l agent i’s

project is implemented for sure. When mi ∈ (bj , 1 − bj), agent j could have two messages, and

agent j sends message h if θj < mi − bj and sends message l if θj > mi − bj. When mi < bj, agent

j essentially only has one message. When mi > 1 − bj, agent j essentially only has one message,

which is l. (iii) Agent i, who moves first, has an equilibrium strategy of interval form.

Proof. Part (i). It is enough to rule out the case that agent j has three irreducible messages for

some mi, since the argument to rule out more than three irreducible messages is similar. Suppose,

given mi, agent j has three irreducible messages: l, m, and h. Let the probability that project j

is implemented given mj , j = l,m, h, be pj . Since the messages are irreducible, these probabilities
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must be different. Without loss of generality, suppose pl < pm < ph. It follows that pm ∈ (0, 1).

Now consider agent j’s incentive. For all types of θj > mi − bj , agent j strictly prefers sending

message h; for all types of θj < mi − bj (this set might be empty), agent j strictly prefers sending

message l; for type θj = mi − bj , agent j is indifferent among all three messages. Thus, message m

can only be sent by the type of mi − bj of agent j. But, then from the DM’s point of view, after

hearing message m from agent j he should implement project i with probability 1. This contradicts

the presumption that pm ∈ (0, 1). Therefore, agent j can have at most two messages for any given

mi.

Part (ii). When mi ∈ (bj , 1 − bj), agent j could have two messages: h and l. If θj < mi − bj ,

then agent j sends message l and project i is implemented for sure, since in this case the posterior

of θj is smaller than mi. If θj > mi−bj , then agent j sends message h and project j is implemented

for sure. This is because the posterior of θj given message h is (1 + mi − bj)/2, which is greater

than mi since mi < 1− bj . When mi < bj , agent j essentially only has one message, as all types of

θj want to send the same message. Depending on whether mi is greater or less than 1/2, project j

is implemented with probability 0 in the first case and with probability 1 in the second case. When

mi > 1− bj , agent j essentially only has one message, which is l. To see this, note that the types

of θj ∈ (1− bj , 1] will send message h, but the posterior of θj given message h, (1 +mi − bj)/2, is

strictly less than mi since mi > 1− bj . Therefore, sending message h again leads to project i being

implemented, which is essentially the same as sending message l.

Part (iii). Let µj(·) be the equilibrium communication rule for agent j specified in part (ii).

Suppose the realized state i is θi and agent i induces a posterior belief vi of θi. Given the DM’s

optimal decision, agent i’s expected utility can be written as

Eθj [Ui|θi, vi] = Pr(θj ≤ vi − bj)(θi + bi) + Pr(θj > vi − bj)E[θj |θj > vi − bj)]

= vi(θi + bi) +
1

2
[1− (vi − bj)

2]− bj(θi + bi).

From the above expression, it can be readily seen that ∂2

∂θi∂vi
Eθj [Ui|θi, vi] > 0. This means that for

any two different posterior of θi, say vi < vi, there is at most one type of agent i who is indifferent

between vi and vi. Therefore, agent i’s equilibrium strategy must be of interval form.

Given the equilibrium strategies specified in Lemma 8, now we characterize equilibrium in more

detail. We start with the case that agent 1 moves first.

5.1.1 Agent 1 talks first

Let N be the number of partitions of agent 1 and a = (a0, a1,a2, ..., aN ) be agent 1’s partition

points. Recall that mn is the posterior given message mn. In particular, mn = (an−1+an)/2. Note

that m1 ≤ 1/2 for any N . Later on we will show that, for all n, mn < 1 − b2, and for all n > 1,

mn > b2. Thus the equilibrium strategies of agent 2 in part (ii) of Lemma 8 can be simplified

further as follows. For all n ≥ 2, given agent 1 sends message mn, agent 2 has two messages h and

l, and project 1 is implemented for sure after message l and project 2 is implemented for sure after

message h. When agent 1 sends message m1, agent 2 can either have one message or two messages,

for which we discuss below.
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Case 1: agent 2 has two messages when agent 1 sends message m1. In this case, when

agent 1 sends message m1, agent 2 also has two messages, h and l, and project 1 is implemented for

sure after message l and project 2 is implemented for sure after message h. We label this type of

equilibrium as A-1-F-Case-1 equilibrium. Note that for agent 2 to have two messages after m1, it

must be the case that m1 > b2 or a1 > 2b2. If θ1 = an, 1 ≤ n ≤ N −1, agent 1 should be indifferent

between sending mn and mn+1, which yields the indifference condition below

(1−mn + b2)
1 +mn − b2

2
+ (mn − b2)(an + b1) (22)

= (1−mn+1 + b2)
1 +mn+1 − b2

2
+ (mn+1 − b2)(an + b1).

The equation of (22) can be rearranged as,

(mn+1 −mn)[mn+1 +mn − 2(b1 + b2 + an)] = 0.

The above equation has two solutions: either mn+1 −mn = 0 or the term in the bracket equals to

0. Note that mn+1 − mn = 0 implies that there is a fully-revealing equilibrium for agent 1. We

argue that this is impossible for the following reason. Suppose agent 1 fully reveals his information.

Now consider any type of agent 1 with θ1 ∈ (b2, 1 − b2). Note that by Lemma 8 agent 2 has two

messages, and he will send message h for θ2 ≥ θ1 − b2, in which case project 2 is implemented, and

he will send message l for θ2 < θ1 − b2, in which case project 1 is implemented. It is obvious that

type θ1 of agent 1 could increase his payoff by deviating to reporting as type θ1+b1+b2. Therefore,

fully revealing equilibrium does not exist.

By ruling out mn+1 ̸= mn, we can further simplify the indifference condition (22) as

(an+1 − an)− (an − an−1) = 4(b1 + b2). (23)

Equation (23) indicates that the partition size depends on both biases, and the incremental step

size is 4(b1 + b2), the same as that of asymmetric equilibrium under simultaneous communication.

The reason for the incremental step size being 4(b1 + b2) is as follows. Agent 1 anticipates that

agent 2 will exaggerate his state by b2 (the indifference type of agent 2 between sending messages

h and l is θ1 − b2). Combining with agent 1’s own bias b1, for type θ1 agent 1 ideally would report

as type θ1 + b1 + b2, resulting in agent 2’s indifferent type being his own ideal cutoff θ1 + b1. Thus

agent 1’s effective bias becomes b1 + b2, which leads to the incremental step size being 4(b1 + b2).

The difference equation can be solved as

an =
n

N
− 2(b1 + b2)n(N − n).

And the necessary condition for an equilibrium with N partitions is

2(b1 + b2)(N − 1)N < 1, (24)
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which gives the upper bound of number of partitions N , N
1F
C1 = ⟨12 + 1

2(1 +
2

b1+b2
)1/2⟩.

Now let us go back to check whether, for all n, mn < 1− b2 holds. We only need to show that

it holds for the maximum mn, mN . Specifically, for N = 1, mN = 1/2 < 1 − b2 since b2 < 1/2.

For N ≥ 2, 1−mN > 4(b1 + b2), which implies that mN < 1− 2(b1 + b2) < 1− b1. Similarly, the

difference equation (23) implies that mn > b2 for all n > 1.

Finally, the constraint that a1 ≥ 2b2 can be explicitly written as

1− 2b2N
2 − 2b1N(N − 1) ≥ 0. (25)

Case 2: agent 2 has only one message when agent 1 sends message m1. In this case,

when agent 1 sends message m1, agent 2 only has one message. For N ≥ 2, we have m1 < 1/2,

so project 2 will be implemented for sure (or agent 2’s single message is h). We label this type

of equilibrium as A-1-F-Case-2 equilibrium. One may wonder that, for this case to arise, we must

have m1 ≤ b2 or a1 ≤ 2b2. In other words, it is impossible for agent 2 to send two messages after

m1. But it turns out that the condition m1 ≤ b2 is not necessary. To see this, suppose m1 > b2 or

a1 > 2b2. Consider the following strategies after agent 1 sending message m1: the DM implements

project 2 regardless of agent 2’s message, and agent 2 sends only one message. This is clearly a

part of equilibrium. Given that the DM ignores agent 2’s message, agent 2 essentially only has one

message. And, given that agent 2 has only one message, the posterior of θ2 is 1/2 ≥ m1; thus it is

optimal for the DM to implement project 2.

It can be verified that the indifference condition for n ≥ 2 is the same as that in case 1:

(an+1 − an)− (an − an−1) = 4(b1 + b2). For partition point a1, the indifference condition becomes

1

2
= (1−m2 + b2)

1 +m2 − b2
2

+ (m2 − b2)(an + b1)

⇔ a2 − a1 = 2a1 + 2b2 + 4b1. (26)

Solving the difference equations, we get

a1 =
1

2N − 1
[1− 2b2(N − 1)2 − 2b1N(N − 1)].

The necessary condition for an equilibrium with N partitions is

2b2(N − 1)2 + 2b1N(N − 1) < 1. (27)

Denote N
1F
C2 as the the upper bound of the number of partitions.

5.1.2 Agent 2 talks first

The analysis for the case that agent 2 talks first is very similar to that of agent 1 talks first

(only the roles of b1 and b2 are reversed), and we just report the results.
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Case 1: agent 1 has two messages when agent 2 sends message m1. We label this type

of equilibrium as A-2-F-Case-1 equilibrium. Note that for agent 1 to have two messages after m1,

it must be the case that m1 > b1 or a1 > 2b1. Let N
2F
C1 be the maximum equilibrium number of

partitions. The equilibrium characterization is parallel to that in the case that agent 1 talks first.

The only difference is that, constraint (25) is replaced by

1− 2b1N
2 − 2b2N(N − 1) ≥ 0. (28)

Case 2: agent 1 has only one message when agent 2 sends message m1. In this case,

when agent 2 sends message m1, agent 1 only has one message, and project 2 will be implemented

for sure. We label this type of equilibrium as A-2-F-Case-2 equilibrium. The necessary condition

for a partition equilibrium with N is

2b1(N − 1)2 + 2b2N(N − 1) < 1. (29)

Denote N
2F
C2 as the the upper bound of the equilibrium number of partitions.

5.1.3 Comparison to simultaneous talk

The following proposition shows that the equilibria under sequential talk and those under si-

multaneous talk are equivalent.

Proposition 6 If there is an equilibrium under simultaneous talk, then there is a corresponding

equilibrium under sequential talk which implements the same outcome; and vice versa. Specifically,

the correspondence of equilibria is as follows: (i) A-1-S equilibria with even number of partitions

under simultaneous talk are equivalent to A-1-F-Case-2 equilibria under sequential talk; (ii) A-1-S

equilibria with odd number of partitions under simultaneous talk are equivalent to A-2-F-Case-1

equilibria under sequential talk; (iii) A-2-S equilibria with even number of partitions under simulta-

neous talk are equivalent to A-2-F-Case-2 equilibria under sequential talk; (iv) A-2-S equilibria with

odd number of partitions under simultaneous talk are equivalent to A-1-F-Case-1 equilibria under

sequential talk.

The difference between simultaneous talk and sequential talk is that, under sequential talk

the agent who talks the second can condition his message on the first agent’s message, and thus

only has at most two messages condition on the first agent’s message. But if we recover the

unconditional messages of the second agent, then equilibrium under sequential talk and equilibrium

under simultaneous talk become directly comparable.

Example 6 The following figure illustrates an A-1-F-Case-2 equilibrium under sequential talk that

is equivalent to the A-1-S equilibrium under simultaneous talk. The dotted line indicates the poste-

rior of θ1 given agent 1’s messages. When agent 1 sends the highest message, agent 2’s cutoff is

a22 and he sends a high message if and only if θ2 ≥ a22. When agent 1 sends the second highest

33



message, agent 2’s cutoff is a21. In total, agent 2 has three unconditional messages (partitions).

When agent 1 sends the highest message, agent 2’s two lower unconditional messages are combined

to the low conditional message. When agent 1 sends the second highest message, agent 2’s two

higher unconditional messages are combined to the high conditional message.

Agent 1

Agent 2

a10=0 a11=0.072 a12=0.396 a13=1

a20=0 a21=0.184 a22=0.648 a23=1

b2 b2

Figure 7: The Equivalence of A-1-S and A-1-F-Case-2 Equilibria

The equivalence between simultaneous talk and sequential talk under competitive cheap talk

is new and surprising. In other cheap talk models with multiple senders, simultaneous talk and

sequential talk usually lead to different outcomes.17

Why the second agent’s ability, under sequential talk, to condition his message on the first

agent’s message does not change the equilibrium outcome? The underlying reason is that, since

only the comparison of two projects matters, even under simultaneous talk one agent’s message

matters only if the ranking of his message is adjacent to that of the other agent’s message. In other

words, when one agent decides which message to send after observing his own state, he has already

implicitly conditioned on that the other agent’s message has adjacent rankings. This implies that,

under sequential talk, the second agent’s ability to directly condition his message on the first agent’s

message does not matter.

Combining the equivalence results of Proposition 6 and the results of Proposition 3 regarding

the most informative asymmetric equilibrium under simultaneous talk, we can characterize the

most informative equilibrium under sequential talk in a straightforward way. Although we will not

elaborate on the characterization, a general pattern is that in the the most informative equilibrium

under sequential talk either agent could talk first. Therefore, from the DM’s perspective, letting

who talk first depends on specific situations. But in the most informative equilibrium, it is more

likely that the agent having a bigger bias talks first (arise in two out of three scenarios).18

17For example, in Krishna and Morgan (2001b) where two agents have symmetirc opposing biases and communicate
simultaneously (corresponding to open rules with heterogenous committee), full information revelation is achievable
in equilibrium. However, in Krishna and Morgan (2001b) where two agents have opposing biases and communicate
sequenitally, full information revelation is not achievable. In a model in which agents’ biases are private information,
Li (2010) shows that sequential talk is superior to simultaneous communication.

18In this respect, our paper is related to Ottaviani and Sorensen (2001), who study the order of public speech with
agents having different abilities and reputational concerns.
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Proposition 7 Suppose agent i talks first under sequential communication. In any equilibrium,

(i) the ex ante probability that agent j’s project being implemented is strictly greater than 1/2. (ii)

Agent j’ ex ante payoff is higher than that of agent i.

Proof. Part (i). By Proposition 6, A-i-F-Case-2 equilibria under sequential talk are equivalent

to A-i-S equilibria with even number of partitions under simultaneous talk. Now by part (ii) of

Proposition 4, the ex ante probability that agent i’s (j’s) project being implemented is strictly

less (greater) than 1/2. Similarly, by Proposition 6, A-i-F-Case-1 equilibria under sequential talk

are equivalent to A-j-S equilibria with odd number of partitions under simultaneous talk. Now by

part (i) of Proposition 4, the ex ante probability that agent j’s (i’s) project being implemented is

strictly greater (less) than 1/2.

Part (ii). Since in any equilibrium both agents get the same return from the implemented

project, the result immediately follows part (i).

Proposition 7 indicates that the agent who talks first is always worse off compared to the agent

who talks the second. This is because in terms of unconditional messages the agent who talks the

second under sequential talk always has the sure option (or the highest overall message) under

simultaneous talk. However, this does not mean that each agent prefers to be the one who talks

the second. This is because, when the order of communication is changed, the most informative

equilibrium changes as well. So the agent who talks first might still prefer talking first, as he

anticipates that switching the order of talking might lead to a less informative equilibrium, under

which he is worse off.

5.2 Delegation

We only consider the case of simple delegation (Aghion and Tirole, 1997; Dessein, 2002).19

That is, the DM delegates the decision right to one of the agents, say agent i. Since agent i cares

about the quality of the project implemented, he first consults agent j regarding θj , and then makes

the decision as to which project to implement. In this setting of simple delegation, there are two

possibilities: the decision right is delegated to either agent 1 or agent 2. We call the former case

A-1 delegation and the latter A-2 delegation.

Consider A-1 delegation, in which agent 2 sends messages first and then agent 1 makes the final

decision. Given the posterior mn induced by agent 2’s message mn regarding θ2, agent 1’s optimal

decision is easy to characterize: implemented project 1 if θ1 + b1 > mn and implement project 2

otherwise. As to agent 2, we can show that (similar to part (iii) of Lemma 8 under sequential talk)

his equilibrium strategy is of interval form.

Proposition 8 (i) The set of equilibria under simple delegation is a subset of that under sequential

talk. Specifically, for any A-i-F-Case-1 equilibrium under sequential talk, there is a corresponding

equilibrium under A-j delegation. For any A-i-F-Case-2 equilibrium under sequential talk, there is a

corresponding equilibrium under A-j delegation if and only if a1,i ≤ 2bj. (ii) The most informative

equilibrium under sequential talk and that under simple delegation is equivalent.

19For optimal delegation, see Melumad and Shibano (1991) and Alonso and Matouschek (2008).
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Proof. We only need to prove the relationship between A-2-F equilibrium under sequential talk

and equilibrium under A-1 delegation, since the relationship between A-1-F equilibrium under

sequential talk and equilibrium under A-2 delegation is similar.

Part (i). Consider sequential talk with agent 2 talks first (A-2-F). According to previous anal-

ysis, all equilibria have the following feature. The DM’s final decision always follows agent 1’s

message: if agent 1 sends a high message, then agent 1’s project is implemented, and project 2 is

implemented if agent 1 sends a low message. Thus, it is as if agent 1 has the decision rights.

As to agent 1’s equilibrium strategy, we discuss two cases. First, consider Case 1 equilibria under

sequential talk. Note that agent 1’s equilibrium strategy under talk is the same as his equilibrium

strategy under delegation: sends a high message (implement project 1) if and only if θ1+ b1 > mn.

Given this, agent 2’s equilibrium strategy must be also the same under two scenarios. Therefore,

for any A-2-F-Case-1 equilibrium under sequential talk, there is a corresponding equilibrium under

A-1 delegation.

Next, consider Case 2 equilibria under sequential talk. The equivalence between equilibria under

two scenarios is similar to the previous case, except for one difference. Recall that under sequential

talk when agent 2 sends the lowest message, agent 1 only has one message, which is message h,

and project 1 is implemented for sure. Under A-1 delegation, agent 1’s strategy is still the same

as in the previous case: implement project 1 if and only if θ1 + b1 > mn. To make sure that

project 1 is implemented for sure when agent 2 sends the lowest message, an additional constraint

a1,2 ≤ 2b1 must be satisfied. But this condition is not required under sequential talk. Therefore,

for any A-2-F-Case-2 equilibrium under sequential talk, there is a corresponding equilibrium under

A-1 delegation if and only if a1,2 ≤ 2b1. Combining the two cases, we reach the conclusion that the

set of equilibria under simple delegation is a subset of that under sequential talk.

Part (ii). Given the results in part (i), it is sufficient to show that if there is a A-2-F-Case

2 equilibrium with agent 2 having N partitions, and a1,2 > 2b1, then it cannot be the most

informative equilibrium. It is enough to find another equilibrium which is more informative than

the one mentioned. The condition a1,2 > 2b1 can be written more explicitly as

1− 2b1N
2 − 2b2N(N − 1) > 0.

This implies that

2(b1 + b2)(N − 1)N < 1.

The above two inequalities means that the A-2-F-Case 1 equilibrium with agent 2 having N par-

titions exists. But this equilibrium is more informative than the one mentioned earlier. This is

because, in terms of corresponding asymmetric equilibria, the former equilibrium is an A-1-S equi-

librium with 2N+1 total number of partitions, while the latter equilibrium is an A-2-S equilibrium

with 2N total number of partitions.

The intuition for Proposition 8 is as follows. In any equilibrium under sequential talk, the DM’s

decision always follows the suggestion (message) of the second agent.20 Thus under sequential

talk it is as if the second agent has the decision right, which is equivalent to simple delegation.

20Recall that the biases of both agents are smaller than 1/2. This implies that the agent who talks second can
always transmit some information.
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The only difference is that with simple delegation, the agent who has decision right will always

utilize his own private information, while under sequential talk the second agent’s message might

be ignored. Therefore, the set of equilibria under simple delegation is a subset of that under

sequential talk. However, sequential talk and simple delegation always lead to the same most

informative equilibrium; thus they are essentially equivalent. Why, under sequential talk, the DM’s

decision always follows the suggestion (message) of the second agent? Roughly speaking, given the

first agent’s equilibrium messages or partitions, the amount of private information possessed by

the second agent always outweighs his incentive to exaggerate the return of his own project. This

is because when the first agent determines his partitions he already taken into account the second

agent’s bias. In particular, each partition size of the first agent is always bigger than twice of the

second agent’s bias.

Combining with previous results, we conclude that simultaneous talk, sequential talk, and simple

delegation are essentially all equivalent, in terms of the most informative equilibrium. This result

is quite surprising, as in other cheap talk models cheap talk and simple delegation in general lead

to different equilibrium outcomes.21 Moreover, the agent having the decision rights is always better

off relative to the other agent.

6 More Than Two Agents

Now we go back to the setting of simultaneous communication, and study the situation where

there are more than two agents.

6.1 Symmetric agents

Suppose there are k ≥ 2 agents and all agents have the same bias b. All the other assumptions

are the same as in the basic model. By modifying the proof of Proposition 1 slightly, we can show

that all PBE must be interval equilibria. We are interested in symmetric equilibria in which all

agents play the same strategy (have the same partitions) and the DM treat all agents equally: in

case that m agents tie for the highest message, the DM implements each of those agents’ projects

with the same probability 1/m. To characterize the equilibrium partition points a, suppose agent

i’s realized return θi = an. He should be indifferent between sending messages mn and mn+1, which

gives rise to the following equation:

[
an+1 + an

2
− (an + b)][

k−1∑
m=1

Cm
k−1(an+1 − an)

mak−1−m
n

1

m+ 1
]

= [(an + b)− an + an−1

2
][

k−1∑
m=1

Cm
k−1(an − an−1)

mak−1−m
n−1

m

m+ 1
]. (30)

21For instance, Dessein (2002) shows that simple delegation is strictly better than cheap talk whenever informative
cheap talk is feasible. In a two-sender model, which is more comparable to the current model, McGee and Yang (2013)
shows that simple delegation is strictly better than simultaneous talk if two agents have like biases, and it can be
better or worse than simultaneous talk if two agents have opposing biases.
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The LHS of (30) is the expected loss, and the RHS of (30) is the expected gain, of sending the

higher message mn+1.

Inspecting (30), we can see that for k > 2 the difference equation is highly nonlinear, which

means that explicit solution is infeasible. Nevertheless, we will show that with more agents, the

incremental step size of partitions will be smaller. We proceed with two lemmas.

Lemma 9 The following two equations hold:

k∑
m=1

Cm
k (b− a)m−1ak−m 1

m+ 1
=

−akb+ bk+1 + ak+1k − akbk

(a− b)2(1 + k)
,

k∑
m=1

Cm
k (a− b)m−1bk−m m

m+ 1
=

−akb+ bk+1 + ak+1k − akbk

(a− b)2(1 + k)
.

Lemma 10 Suppose 0 < c < a < b < 1, and k ∈ Z+, k > 1. Then, the following inequality holds:

∑k−1
m=1C

m
k−1(b− a)m−1ak−1−m 1

m+1∑k−1
m=1C

m
k−1(a− c)m−1ck−1−m m

m+1

<

∑k
m=1C

m
k (b− a)m−1ak−m 1

m+1∑k
m=1C

m
k (a− c)m−1ck−m m

m+1

.

Proposition 9 As the number of agents, k, increases, in symmetric equilibrium the incremental

step size of partitions decreases.

Proof. The indifference condition (30) can be reformulated as

an+1 − an − 2b

2
(an+1 − an)

∑k−1
m=1C

m
k−1(an+1 − an)

mak−1−m
n

1
m+1∑k−1

m=1C
m
k−1(an − an−1)mak−1−m

n−1
m

m+1

=
an − an−1 + 2b

2
(an − an−1)

(31)

With k′ = k + 1 senders, the indifference condition becomes

a′n+1 − a′n − 2b

2
(a′n+1 − a′n)

∑k
m=1C

m
k (a′n+1 − a′n)

ma′k−m
n

1
m+1∑k

m=1C
m
k (a′n − a′n−1)

ma′k−m
n−1

m
m+1

=
a′n − a′n−1 + 2b

2
(a′n − a′n−1)

(32)

Suppose a′j = aj , j = n− 1, n, n+ 1. By Lemma 10 (b = an+1, a = an and c = an−1), we have

∑k−1
m=1C

m
k−1(an+1 − an)

m−1ak−1−m
n

1
m+1∑k−1

m=1C
m
k−1(an − an−1)m−1ak−1−m

n−1
m

m+1

<

∑k
m=1C

m
k (a′n+1 − a′n)

m−1a′k−m
n

1
m+1∑k

m=1C
m
k (a′n − a′n−1)

m−1a′k−m
n−1

m
m+1

. (33)

Now by (31) and (33), the LHS of (32) is strictly bigger than its RHS. This implies that, if

a′n−1 = an−1 and a′n = an, then a′n+1 < an+1. In other words, the incremental step size decreases
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as k increases.

The underlying reason for Proposition 9 is as follows. Recall that the indifference condition

balances the expected gain (when no one among the other agents sends the higher message) and

the expected loss (when some agents send the higher message) of sending the higher message.

When the number of agents increases, other things equal, if the agent in question sends the higher

message, relative to the probability of gaining (no one among the other agents sends the higher

message), the probability of incurring loss (some agents send the higher message) increases. As a

result, the agent in question has a weaker incentive to send the higher message or exaggerate the

return of his own project, meaning that the partition size of the higher message becomes smaller

relative to the partition size of the lower message.

Proposition 9 implies that with more agents the partition sizes will increase more slowly. There-

fore, with more agents the maximum number of partitions in equilibrium will weakly increase, and

equilibrium partitions will become more even. In other words, as the number of agents increases

each agent will transmit more information in symmetric equilibrium. This pattern is illustrated in

the following example.

Example 7 Suppose b = 0.4. When there are two agents, the most informative symmetric equi-

librium has two partitions, with partition point a1 = 0.1. When there are three agents, in the

two-partition equilibrium the partition point is a1 = 0.1572. Clearly, when there are three agents,

the incremental step size is smaller and the partitions are more even, and hence more information

is transmitted by each agent.

6.2 Asymmetric agents

Here we just discuss the case of three asymmetric agents, with 0 < b1 < b2 < b3. All PBE

still must be interval equilibrium, and equilibrium must be asymmetric. All equilibrium messages

of all three agents can be ranked unambiguously according to the posteriors.22 To make the

set of messages irreducible, two messages having the consecutive overall rankings must belong to

different agents. However, with three agents the messages do not need to have an alternating

ranking structure (unlike in the two-agent case): the overall rankings of three agents’ messages

have a cyclical pattern (for example, the lowest message belongs to agent 1, the second lowest

to agent 2, the third lowest to agent 3, the fourth lowest to agent 1, and so on). There are

many other possibilities, as long as two messages having the consecutive overall rankings belong to

different agents. For example, agent 3 babbles (only has one message), and the messages of agent

1 and agent 2 basically have an alternating ranking structure (excluding agent 3’s sole message).

Essentially, only agent 1 and 2 are actively competing with each other, with agent 3’s project (with

expected payoff 1/2) serving as an outside option. Alternatively, one can think of complicated

ranking structures in which three agents’ messages or partitions are intertwined. There are a few

interesting questions to ask. What kind of ranking structure will emerge in the most informative

equilibrium? Is it better to have only two agents competing actively or to have all three agents

22With three agents actively competing with each other, Quasi-symmetric equilibrium defined in the two-agent
case no longer exists. This is because now it is impossible to make two agents indifferent at the same time by
manipulating the tie-breaking rule.
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competing actively? To maximize the DM’s payoff, should the agent who has the smallest bias

always have the give-up option, or the sure option? We leave this topic for future research.

7 Conclusions and Discussions

This paper studies a competitive cheap talk model in which two agents, who each is responsible

for a single project, communicate with the DM before exactly one project is chosen. Both agents

and the DM share some common interests, but at the same time each agent has an own project

bias. We first fully characterize the equilibria under simultaneous communication. All equilibria

are shown to be partition equilibrium, and the partitions of two agents’ are intimately related: the

interior partition points of two agents has an alternating structure. The equilibrium numbers of

partitions of two agents are either the same or differ by one. Although letting the agent with the

smaller bias have the give-up option potentially leads to more partitions, in the most informative

equilibrium the agent who has the bigger bias could have the give-up option. However, in the most

informative equilibrium, the agent with a smaller bias has weakly more messages, and is more likely

to have the give-up option and the sure option. Fixing the total bias of two agents, making the

biases more unequal could increase or decrease the DM’s payoff in the most informative equilibrium.

We then study sequential communication. It turns out that the set of equilibria under sequential

communication and that under simultaneous communication are outcome equivalent. We also show

that sequential communication and simple delegation are essentially equivalent in the sense that

they always lead to the same most informative equilibrium. These are surprising results, as in

other cheap talk models different timing and delegation typically lead to different equilibrium

outcomes. Comparing two agents’ payoffs, under simultaneous communication the agent who has

the sure option, under sequential communication the agent who talks the second, and under simple

delegation the agent who has the decision rights, is always relatively better off. When the number

of agents increases, in the most informative symmetric equilibrium each agent transmits more

information.

Throughout the paper we have assumed that the return of each project is uniformly distributed.

With more general distributions, the difference equations will not have analytical solutions, which

would complicate the analysis. However, we think that majority of the results of our paper will

hold qualitatively under more general distributions. In the paper we also assumed that exactly one

project will be implemented. In some situations, it is reasonable to think that there is an outside

option under which neither project is implemented. If the DM chooses the outside option, then

neither agent gets private benefit. With the outside option, if a project’s return is too low, then the

agent would rather have the outside option implemented, and thus his interest is perfectly aligned

with the DM’s. Therefore, for each agent there is a lowest message which essentially indicates

the return of the project is definitely below the outside option. Apart from the lowest message, if

either agent sends higher messages then the DM will definitely not adopt the outside option. In

other words, starting from the second lowest messages two agents are competing with each other

to have his own project implemented, which is essentially the same as the basic model. From this

discussion, we can see that adding an outside option would not qualitatively change the existing

results much. Finally, it is also interesting to study the case in which two projects are asymmetric
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or their returns have different distributions. We leave this for future research.

Appendix

Equilibrium selection.

Consider the following equilibrium refinement. In an A-i-S equilibrium suppose ai,1 > 2bj (or

mi,1 > bj). Note that in equilibrium, if agent i sends the lowest message m1
i then project j is

implemented for sure. Now suppose the realized return of project j is very low: θj ∈ [0, ai,1 − 2bj).

In this case, both agent j and the DM would prefer project i being implemented, given agent i

strategy. To achieve that, agent j could send an out of equilibrium message, say “θj is very low”

or “do not implement my project j,” and the DM would listen to it and implement project i.

This shows that an A-i-S equilibrium with ai,1 > 2bj is not stable or reasonable; and for an A-i-S

equilibrium to be stable it must be the case that ai,1 ≤ 2bj .

Lemma 11 (i) Suppose an A-i-S equilibrium with an even (odd) number of partitions N +1 is not

the most informative A-i-S equilibrium with even (odd) number of partitions, then the equilibrium

with N + 1 partitions is not stable. (ii) The most informative A-1-S equilibrium must be stable.

Proof. Part (i). We only prove the case that N +1 is even, since the proof for the case that N +1

is odd is similar. Translating into the context of QSE, A-i-S QSE with N partitions and N + 2

partitions both exist. We want to show that ai,1(N) > 2bj . Given that a QSE with N+2 partitions

exists, by (18) we have (N+1)(N+3)
2 bi +

(N+1)2

2 bj < 1. More explicitly, by (14),

a1(N)− 2bj ∝ 2− (N − 1)(N + 1)bi − (N + 1)2bj > 0,

where the inequality follows the previous one.

Part (ii). Let N be the number of partitions in the most informative A-1-S QSE. We only

prove the case that N is odd. We need to show that a1,1(N) ≤ 2b2. Suppose to the contrary

a1,1(N) > 2b2. By (14), it implies that

2− (N − 1)(N + 1)b1 − (N + 1)2b2 > 0.

But given that b2 > b1, the above inequality implies that

2− (N − 1)(N + 1)b2 − (N + 1)2b1 > 0,

which, by (17), implies that an A-1-S QSE with N + 1 partitions exists. This contradicts the fact

that the most informative A-1-S QSE has N partitions.

The results of Lemma 11 are intuitive. If an equilibrium with more partitions exists, it implies

that the first partition in the equilibrium of fewer partitions is large relative to the biases, which
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further means that the equilibrium with fewer partitions is not stable. Although Lemma 11 does

not establish that the most informative equilibrium must be stable and any equilibrium that is not

the most informative one is not stable, it suggests that only the more informative equilibria can be

potentially stable and thus are the more reasonable ones.

Proof of Proposition 6.

Proof. Since the proof of each part is similar, we will show part (i) in detail only. For other parts,

we will just show what the differences are from part (i).

Part (i). We need to show the equivalence between an A-1-F-Case-2 equilibrium under sequential

talk with agent 1 having N partitions and an A-1-S equilibrium with 2N (even number) partitions

under simultaneous talk. We prove it in two steps. First, we show that two equilibria lead to the

same partitions. Second, we show that two equilibria implement the same outcome.

Recall that we denote agent 1’s equilibrium partition points as a1. We first show the difference

equations characterizing a1 under sequential talk and those under simultaneous talk are the same.

Comparing the first equation in (8) under simultaneous talk and (23), we can see that they are

exactly the same. Under simultaneous talk, the third equation in (8) and a2,1 =
1
2(a1,1 + a1,2)− b2

exactly give rise to (26) under sequential talk. Thus the difference equations characterizing a1 are

the same under two scenarios.

As to agent 2’s partition points a2, consider the A-1-F-Case-2 equilibrium under sequential

talk. Recall that agent 2, who talks second, has only two messages (or one message) conditional

on agent 1’s message. Now we augment agent 2’s messages (or recover agent 2’s unconditional

partitions). Denote m1,n as the posterior of θ1 induced by agent 1’s message mn
1 . Now define

agent 2’s unconditional partitions as follows. For N ≥ n ≥ 2, define a2,n−1 = m1,n − b2, and

agent 2 sends message mn
2 if θ2 ∈ [a2,n−1, a2,n]. We denote the constructed partition points of

agent 2 as a2. It can be readily seen that agent 2 in total has N unconditional messages. By

construction, note that for any interior n we have a2,n > a1,n. Thus (a1, a2) under simultaneous

talk is potentially corresponding to Agent-1-sacrificing equilibria with an even number (2N) of

partitions under simultaneous talk.

Now we show that the constructed a2 under sequential talk follows the same equilibrium indiffer-

ence conditions under simultaneous talk. Actually, this is obvious by construction. For N > n ≥ 1,

we have a2,n = m1,n+1 − b2, which is exactly the same as (7) under simultaneous talk. Therefore,

two equilibria lead to the same partitions for both agents.

What remains to be shown is that the two equilibria implement the same outcome. Recall

that we have already shown that after augmenting the messages (recovering the unconditional

partitions) of agent 2 under sequential talk, two equilibria lead to the same partitions for both

agents. Now consider any realized pair of states (θ1,n1 , θ2,n2) (θ1 belongs to partition n1, and θ2

belongs to partition n2). Under simultaneous talk, project 1 is implemented if and only if n1 > n2,

otherwise project 2 is implemented. Under sequential talk, if n1 > n2 then agent 2 will send a low

message and project 1 is implemented; if n1 ≤ n2 then agent 2 will send a high message and project

2 is implemented. This shows that the two equilibria implement the same outcome.

Part (ii). Consider an A-2-F-Case-1 equilibrium under sequential talk with agent 2 having N

partitions. Since for each message of agent 2 agent 1 has two messages, in total agent 1 has N + 1

unconditional messages or partitions. Moreover, if agent 1 sends the lowest unconditional message,
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project 1 will not be implemented for sure. Therefore, it corresponds to A-1-S equilibria with an

odd number of partitions (2N + 1 partitions in total).

Part (iii). Consider an A-2-F-Case-2 equilibrium under sequential talk with agent 2 having N

partitions. Since, for the lowest message of agent 2 agent 1 only has one message, and for each

other message of agent 2 agent 1 has two messages, in total agent 1 has N unconditional messages

or partitions. Moreover, if agent 2 sends the lowest message, project 2 will not be implemented for

sure. Therefore, it corresponds to A-2-S equilibria with an even number of partitions (2N partitions

in total).

Part (iv). Consider an A-1-F-Case-1 equilibrium under sequential talk with agent 1 having N

partitions. Since for each message of agent 1 agent 2 has two messages, in total agent 2 has N + 1

unconditional messages or partitions. Moreover, if agent 2 sends the lowest unconditional message,

project 2 will not be implemented for sure. Therefore, it corresponds to A-2-S equilibria with an

odd number of partitions (2N + 1 partitions in total).

Proof of Lemma 9.

Proof. We only prove the first statement, as the proof for the second statement is similar.

k∑
m=1

Cm
k (b− a)m−1ak−m 1

m+ 1
=

k∑
m=1

m−1∑
i=0

Cm
k Ci

m−1b
i(−1)m−1−iak−i−1 1

m+ 1

=

k−1∑
i=0

biak−i−1(

k∑
m=i+1

Cm
k Ci

m−1(−1)m−1−i 1

m+ 1
)

=
−akb+ bk+1 + ak+1k − akbk

(a− b)2(1 + k)
.

(34)

Proof of Lemma 10.

Proof. By Lemma 9, the above inequality is equivalent to

−ak−1b+ bk + ak(k − 1)− ak−1b(k − 1)

−ak−1c+ ck + ak(k − 1)− ak−1c(k − 1)
<

−akb+ bk+1 + ak+1k − akbk

−akc+ ck+1 + ak+1k − akck
.

The above inequality can be further simplified as (ak − bk)(b − c)(ak − ck) + (b − a)(a − c)(bk −
ck)ak−1k > 0. Given that c < a < b, this inequality is equivalent to

−(

k−1∑
i=0

bk−i−1ai)(

k−1∑
i=0

ak−i−1ci) + (

k−1∑
i=0

bk−i−1ci)ak−1k > 0. (35)

We show that inequality (35) holds by induction. Let Ak ≡
∑k−1

i=0 bk−i−1ai, Bk ≡
∑k−1

i=0 bk−i−1ci

and Ck ≡
∑k−1

i=0 ak−i−1ci. For k = 2, inequality (35) becomes (b − a)(a − c) > 0, which obviously

holds. Now suppose inequality (35) holds for n = k, that is, AkCk < Bka
k−1k. We want to show
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inequality (35) holds for n = k + 1, that is, Ak+1Ck+1 < Bk+1a
k(k + 1). This inequality can be

expanded as

ab(AkCk −Bka
kk) + ak(−ckk + aCk) + b(−Bka

k +Akc
k) < 0.

Given that AkCk < Bka
k−1k, it is enough to show that ak(ckk − aCk) + b(Bka

k − Akc
k) > 0.

Specifically,

ak(ckk − aCk) + b(Bka
k −Akc

k)

=

k−1∑
i=0

akci(ck−i − ak−i) + bi+1(akck−i−1 − ak−i−1ck)

>

k−1∑
i=0

akci(ck−i − ak−i) + ai+1(akck−i−1 − ak−i−1ck)

=

k−1∑
i=0

ak(−ciak−i + ai+1ck−i−1 = 0.
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